20 research outputs found

    Investigating the ranges of (meta)stable phase formation in (In<sub>x</sub>Ga<sub>1−x</sub>)<sub>2</sub>O<sub>3</sub>: Impact of the cation coordination

    Get PDF
    We investigate the phase diagram of the heterostructural solid solution (InxGa1−x)2O3 both computationally, by combining cluster expansion and density functional theory, and experimentally, by means of transmission electron microscopy (TEM) measurements of pulsed laser deposited (PLD) heteroepitaxial thin films. The shapes of the Gibbs free energy curves for the monoclinic, hexagonal, and cubic bixbyite alloy as a function of composition can be explained in terms of the preferred cation coordination environments of indium and gallium. We show by atomically resolved scanning TEM that the strong preference of indium for sixfold coordination results in ordered monoclinic and hexagonal lattices. This ordering impacts the configurational entropy in the solid solution and thereby the (InxGa1−x)2O3 phase diagram. The resulting phase diagram is characterized by very limited solubilities of gallium and indium in the monoclinic, hexagonal, and cubic ground state phases, respectively, but exhibits wide metastable ranges at realistic growth temperatures. On the indium rich side of the phase diagram a wide miscibility gap up to temperatures higher than 1400 K is found, which results in phase separated layers. The experimentally observed indium solubilities in the PLD samples are in the range of x=0.45 and x=0.55 for monoclinic and hexagonal single-phase films, while for phase separated films we find x=0.5 for the monoclinic phase, x=0.65–0.7 for the hexagonal phase and x≥0.9 for the cubic phase. These values are consistent with the computed metastable ranges for each phase

    Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy

    Get PDF
    We here present an experimental study on (010)-oriented β-Ga2O3 thin films homoepitaxially grown by plasma assisted molecular beam epitaxy. We study the effect of substrate treatments (i.e., O-plasma and Ga-etching) and several deposition parameters (i.e., growth temperature and metal-to-oxygen flux ratio) on the resulting Ga2O3 surface morphology and growth rate. In situ and ex-situ characterizations identified the formation of (110) and (1¯10)-facets on the nominally oriented (010) surface induced by the Ga-etching of the substrate and by several growth conditions, suggesting (110) to be a stable (yet unexplored) substrate orientation. Moreover, we demonstrate how metal-exchange catalysis enabled by an additional In-flux significantly increases the growth rate (>threefold increment) of monoclinic Ga2O3 at high growth temperatures, while maintaining a low surface roughness (rms < 0.5 nm) and preventing the incorporation of In into the deposited layer. This study gives important indications for obtaining device-quality thin films and opens up the possibility to enhance the growth rate in β-Ga2O3 homoepitaxy on different surfaces [e.g., (100) and (001)] via molecular beam epitaxy

    Electrical compensation by Ga vacancies in Ga2O3  thin films

    No full text
    The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga2O3 thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga2O3 thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In2O3, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as Oi.Peer reviewe
    corecore