998 research outputs found

    Mass transfer in a 1370 C (2500 F) lithium thermal convection loop

    Get PDF
    Experimental results from a test to evaluate interstitial element mass transfer effects on T-111, ASTAR 811C, and ASTAR 1211C after 5000 hours in flowing lithium at 1370 C (2500 F) are presented. No gross corrosion effects were observed. However, hafnium and nitrogen transfer to cooler regions within the loop were noted. Oxygen was in general removed from test specimens, but there was no evidence to indicate that it was a major factor in the mass transfer process. Carbon and hydrogen transfer were not detected

    Stirling material technology

    Get PDF
    The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A materials research and technology program identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818, NASAUT 4G-A1, and NASACC-1 as candidate replacements for the cobalt containing alloys used in current prototype engines. It is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. Results of research that lead to this conclusion are presented

    Energy Efficient and Reliable ARQ Scheme (ER-ACK) for Mission Critical M2M/IoT Services

    Get PDF
    Wireless sensor networks (WSNs) are the main infrastructure for machine to machine (M2M) and Internet of thing (IoT). Since various sophisticated M2M/IoT services have their own quality-of-service (QoS) requirements, reliable data transmission in WSNs is becoming more important. However, WSNs have strict constraints on resources due to the crowded wireless frequency, which results in high collision probability. Therefore a more efficient data delivering scheme that minimizes both the transmission delay and energy consumption is required. This paper proposes energy efficient and reliable data transmission ARQ scheme, called energy efficient and reliable ACK (ER-ACK), to minimize transmission delay and energy consumption at the same time. The proposed scheme has three aspects of advantages compared to the legacy ARQ schemes such as ACK, NACK and implicit-ACK (I-ACK). It consumes smaller energy than ACK, has smaller transmission delay than NACK, and prevents the duplicated retransmission problem of I-ACK. In addition, resource considered reliability (RCR) is suggested to quantify the improvement of the proposed scheme, and mathematical analysis of the transmission delay and energy consumption are also presented. The simulation results show that the ER-ACK scheme achieves high RCR by significantly reducing transmission delay and energy consumption

    Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    Get PDF
    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy

    A monoclonal antibody prevents aggregation of the NBD1 domain of the cystic fibrosis transmembrane conductance regulator

    Get PDF
    The homozygous deletion of the phenylalanine at position 508 (ΔPhe508) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common CF-causing genetic defect. It has been proposed that the propensity of NBD1 to aggregate may lead to a lower display of the CFTR chloride channel to the cell membrane and to the disease, thus opening an avenue for the pharmacological development of CFTR folding correctors. Here, we show that a human monoclonal antibody fragment specific to the folded conformation of NBD1 inhibits the aggregation of NBD1 in vitro. However, in contrast to the previously published observations, we proved experimentally that NBD1 of wild-type and ΔPhe508 version of CFTR display comparable propensities to aggregate in vitro and that the corresponding full-length CFTR protein reaches the cell membrane with comparable efficiency in mammalian cell expression systems. On the basis of our results, the ‘folding defect' hypothesis seems unlikely to represent the causal mechanism for the pathogenesis of CF. A solid understanding of how the ΔPhe508 deletion leads to the disease represents an absolute requirement for the development of effective drugs against C

    HyPaFilter+: Enhanced Hybrid Packet Filtering using Hardware Assisted Classification and Header Space Analysis

    Get PDF
    Firewalls, key components for secured network in- frastructures, are faced with two different kinds of challenges: first, they must be fast enough to classify network packets at line speed, second, their packet processing capabilities should be versatile in order to support complex filtering policies. Unfortu- nately, most existing classification systems do not qualify equally well for both requirements: systems built on special-purpose hardware are fast, but limited in their filtering functionality. In contrast, software filters provide powerful matching semantics, but struggle to meet line speed. This motivates the combination of parallel, yet complexity-limited specialized circuitry with a slower, but versatile software firewall. The key challenge in such a design arises from the dependencies between classification rules due to their relative priorities within the rule set: complex rules requiring software-based processing may be interleaved at arbitrary positions between those where hardware processing is feasible. We therefore discuss approaches for partitioning and transforming rule sets for hybrid packet processing. As a result we propose HyPaFilter+, a hybrid classification system consisting of an FPGA-based hardware matcher and a Linux netfilter firewall, which provides a simple, yet effective hardware/software packet shunting algorithm. Our evaluation shows up to 30-fold throughput gains over software packet processing.We would like to acknowledge the support of the German Federal Ministry for Economic Affairs and Energy and the German Federal Ministry of Education and Research. This work was, in part, supported by the EU Horizon 2020 SSICLOPS project (grant agreement 644866)

    Raças fisiológicas e linhagens de uma população contemporânea de Magnaporthe oryzae associada à brusone do arroz irrigado no Sul do Brasil.

    Get PDF
    Objetivou-se identificar raças fisiológicas, com base em séries diferenciadoras, e linhagens, com base em marcadores microssatélites, em uma população de Magnaporthe oryzae do sul do Brasil

    Sonho, desafio e tecnologia: 35 anos de contribuições da Embrapa Suínos e Aves.

    Get PDF
    bitstream/item/105259/1/publicacao-1z33f2s.pdfProjeto: 11.11.11.111

    Activation of the Syk tyrosine kinase is insufficient for downstream signal transduction in B lymphocytes

    Get PDF
    BACKGROUND: Immature B lymphocytes and certain B cell lymphomas undergo apoptotic cell death following activation of the B cell antigen receptor (BCR) signal transduction pathway. Several biochemical changes occur in response to BCR engagement, including activation of the Syk tyrosine kinase. Although Syk activation appears to be necessary for some downstream biochemical and cellular responses, the signaling events that precede Syk activation remain ill defined. In addition, the requirements for complete activation of the Syk-dependent signaling step remain to be elucidated. RESULTS: A mutant form of Syk carrying a combination of a K395A substitution in the kinase domain and substitutions of three phenylalanines (3F) for the three C-terminal tyrosines was expressed in a murine B cell lymphoma cell line, BCL(1).3B3 to interfere with normal Syk regulation as a means to examine the Syk activation step in BCR signaling. Introduction of this kinase-inactive mutant led to the constitutive activation of the endogenous wildtype Syk enzyme in the absence of receptor engagement through a 'dominant-positive' effect. Under these conditions, Syk kinase activation occurred in the absence of phosphorylation on Syk tyrosine residues. Although Syk appears to be required for BCR-induced apoptosis in several systems, no increase in spontaneous cell death was observed in these cells. Surprisingly, although the endogenous Syk kinase was enzymatically active, no enhancement in the phosphorylation of cytoplasmic proteins, including phospholipase Cγ2 (PLCγ2), a direct Syk target, was observed. CONCLUSION: These data indicate that activation of Syk kinase enzymatic activity is insufficient for Syk-dependent signal transduction. This observation suggests that other events are required for efficient signaling. We speculate that localization of the active enzyme to a receptor complex specifically assembled for signal transduction may be the missing event
    corecore