134 research outputs found

    Classification of newborn EEG maturity with Bayesian averaging over decision trees

    Get PDF
    EEG experts can assess a newborn’s brain maturity by visual analysis of age-related patterns in sleep EEG. It is highly desirable to make the results of assessment most accurate and reliable. However, the expert analysis is limited in capability to provide the estimate of uncertainty in assessments. Bayesian inference has been shown providing the most accurate estimates of uncertainty by using Markov Chain Monte Carlo (MCMC) integration over the posterior distribution. The use of MCMC enables to approximate the desired distribution by sampling the areas of interests in which the density of distribution is high. In practice, the posterior distribution can be multimodal, and so that the existing MCMC techniques cannot provide the proportional sampling from the areas of interest. The lack of prior information makes MCMC integration more difficult when a model parameter space is large and cannot be explored in detail within a reasonable time. In particular, the lack of information about EEG feature importance can affect the results of Bayesian assessment of EEG maturity. In this paper we explore how the posterior information about EEG feature importance can be used to reduce a negative influence of disproportional sampling on the results of Bayesian assessment. We found that the MCMC integration tends to oversample the areas in which a model parameter space includes one or more features, the importance of which counted in terms of their posterior use is low. Using this finding, we proposed to cure the results of MCMC integration and then described the results of testing the proposed method on a set of sleep EEG recordings

    Extraction of features from sleep EEG for Bayesian assessment of brain development

    Get PDF
    Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG). Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts' agreement. The knowledge of predictive posterior distribution allows experts to estimate confidence intervals within which decisions are distributed. Bayesian approach to probabilistic inference has provided accurate estimates of intervals of interest. In this paper we propose a new feature extraction technique for Bayesian assessment and estimation of predictive distribution in a case of newborn brain development assessment. The new EEG features are verified within the Bayesian framework on a large EEG data set including 1,100 recordings made from newborns in 10 age groups. The proposed features are highly correlated with brain maturation and their use increases the assessment accuracy

    Using a Bayesian averaging model for estimating the reliability of decisions in multimodal biometrics

    Get PDF
    The issue of reliable authentication is of increasing importance in modern society. Corporations, businesses and individuals often wish to restrict access to logical or physical resources to those with relevant privileges. A popular method for authentication is the use of biometric data, but the uncertainty that arises due to the lack of uniqueness in biometrics has lead there to be a great deal of effort invested into multimodal biometrics. These multimodal biometric systems can give rise to large, distributed data sets that are used to decide the authenticity of a user. Bayesian model averaging (BMA) methodology has been used to allow experts to evaluate the reliability of decisions made in data mining applications. The use of decision tree (DT) models within the BMA methodology gives experts additional information on how decisions are made. In this paper we discuss how DT models within the BMA methodology can be used for authentication in multimodal biometric systems

    Computer-aided segmentation and estimation of indices in brain CT scans

    Get PDF
    The importance of neuro-imaging as one of the biomarkers for diagnosis and prognosis of pathologies and traumatic cases is well established. Doctors routinely perform linear measurements on neuro-images to ascertain severity and extent of the pathology or trauma from significant anatomical changes. However, it is a tedious and time consuming process and manually assessing and reporting on large volume of data is fraught with errors and variation. In this paper we present a novel technique for segmentation of significant anatomical landmarks using artificial neural networks and estimation of various ratios and indices performed on brain CT scans. The proposed method is efficient and robust in detecting and measuring sizes of anatomical structures on non-contrast CT scans and has been evaluated on images from subjects with ages between 5 to 85 years. Results show that our method has average ICC of ≥0.97 and, hence, can be used in processing data for further use in research and clinical environment

    Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity

    Get PDF
    We explored the feature extraction techniques for Bayesian assessment of EEG maturity of newborns in the context that the continuity of EEG is the most important feature for assessment of the brain development. The continuity is associated with EEG “stationarity” which we propose to evaluate with adaptive segmentation of EEG into pseudo-stationary intervals. The histograms of these intervals are then used as new features for the assessment of EEG maturity. In our experiments, we used Bayesian model averaging over decision trees to differentiate two age groups, each included 110 EEG recordings. The use of the proposed EEG features has shown, on average, a 6% increase in the accuracy of age differentiation
    • …
    corecore