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Abstract –  EEG experts can assess a newborn's brain maturity by visual analysis of age-related 
patterns in sleep EEG. It is highly desirable to make the results of assessment most accurate and 
reliable. However, the expert analysis is limited in capability to provide the estimate of uncertainty 
in  assessments.  Bayesian  inference  has  been  shown providing  the  most  accurate  estimates  of 
uncertainty  by  using  Markov  Chain  Monte  Carlo  (MCMC)  integration  over  the  posterior 
distribution. The use of MCMC enables to approximate the desired distribution by sampling the 
areas of interests in which the density of distribution is high. In practice, the posterior distribution  
can be multimodal, and so that the existing MCMC techniques cannot provide the proportional 
sampling from the areas of interest. The lack of prior information makes MCMC integration more  
difficult  when  a  model  parameter  space  is  large  and  cannot  be  explored  in  detail  within  a 
reasonable time. In particular, the lack of information about EEG feature importance can affect the 
results  of  Bayesian  assessment  of  EEG maturity.  In  this  paper  we  explore  how the  posterior 
information  about  EEG  feature  importance  can  be  used  to  reduce  a  negative  influence  of 
disproportional  sampling  on  the  results  of  Bayesian  assessment.  We  found  that  the  MCMC 
integration tends to oversample the areas in which a model parameter space includes one or more 
features, the importance of which counted in terms of their posterior use is low. Using this finding,  
we proposed to cure the results of MCMC integration and then described the results of testing the 
proposed method on a set of sleep EEG recordings.
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1. Introduction

Early  diagnosis  of  abnormal  newborn  brain  development  is  a  challenging  problem  in  the 
developmental neurology and clinical neonatology. Experts attempt to assess brain maturity by visual 
analysis of age-related patterns  in electroencephalograms (EEG) recorded from sleeping newborns 
(Tharp 1990; Holthausen et  al.  2000).  The analysis can take hours of expert  work to confidently 
interpret sleep EEG, as the age-related patterns widely vary during sleep hours as well as between 
patients, and there are no regular rules for interpretation of these patterns (Cooper et al. 2003). There  
are neurological evidences that the post-conceptional ages (PCA) of healthy newborns normally match 
their EEG-estimated ages. In cases when the mismatch is observed during two and more weeks, the  
newborn’s  brain development is  most likely abnormal (Scher 1997). Thus, the mismatch between 
PCA and EEG-estimated ages can alert about abnormal brain development.

In the first publications on EEG assessment of newborn brain development (Parmelee et al. 1968), 
the experts have visually analyzed 47 EEG recordings made in 11 PCA groups between 39 and 43 
weeks. The experts have found 10 maturity-related EEG patterns. Then the experts have estimated the 
PCA of each EEG recording by counting the distribution of the maturity-related patterns. The expert  
estimates have exactly matched the stated PCA in 27.6% of cases. In 59.5% the matches were within  
±1 week, and 77.5% of cases were found matching within ±2 weeks. 

In later publications, it has been attempted to learn brain development models from sleep EEG data 
recorded from newborns whose maturation was preliminary estimated by experts. In (Scher, Steppe, & 
Banks 1996), the regression models have been applied to mapping the brain maturity into EEG index. 
In (Schetinin & Schult 2005; Crowell, Kapuniai & Jones 1978), the classification models have been 
used for distinguishing the maturity levels, at least, for one normal and one abnormal levels of brain 
development. 
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The above attempts were aimed at learning a single model providing the maximum likelihood on 
given EEG data. However such models cannot ensure the maximum accuracy when the likelihood 
distribution  is  affected  by  noise  and  its  shape  is  multimodal.  Besides,  the  model  selection  
methodology cannot provide estimates of a full posterior distribution which is required for accurate 
assessment of the uncertainty in model outcomes.

In  contrast,  Bayesian  classification  enables  the  uncertainty  to  be  accurately  estimated  via 
averaging over areas of high densities of the likelihood (Chipman, George, & McCullock 1998; Duda, 
Hart & Stork 2000; Denison et al. 2002; Armero et al. 2011). The estimates of uncertainty are made 
over an ensemble of classification models obtained during Bayesian averaging. The use of Decision 
Trees  (DTs)  as  classification  models  enables  to  select  features  which  make  the  most  significant 
contribution to the classification. The feature selection becomes important when prior information on 
EEG feature importance is absent or deficient. Besides, DTs are attractive classification models as 
experts can interpret them. In the case of ensembles, a single DT providing a Maximum Posterior can  
be selected for interpretation as we proposed in (Schetinin et al. 2007). 

The  results  of  implementation  of  Bayesian  averaging  are  critically  dependent  on  the  prior 
information and on the model parameter diversity in areas of averaging. When averaging is done over  
areas of interest with maximum likelihood, the resultant class posterior distribution is  unbiased, and  
therefore the classification error is minimal. The use of prior information enables to specify the areas 
of interest and thus to improve diversity in model parameters.

Particularly, the prior information on EEG feature importance can be absent and so the areas of 
interest cannot be explicitly specified and then explored in detail (Domingos 2000; Schetinin & Maple 
2002).  Selection of EEG features has been shown improving the classification in (Yom-Tov & Inbar 
2002).

In  our  previous  work  (Jakaite  & Schetinin  2008),  we attempted  to  mitigate  the  lack  of  prior 
information and  proposed  a  new strategy  for  Bayesian  averaging  over  DT models  for  predicting 
trauma survival. In this case of application, we observed that some screening tests (namely features)  
make a weak contribution to the model outcome and then we found that the DTs exploiting such weak 
tests can be discarded without affecting the accuracy of estimating the full class posterior distribution.  
In practice, it is important to reduce the number of features without an increase in the classification  
uncertainty, and the proposed method has been shown able to do achieve that. 

The above findings motivated us to explore the discarding strategy in case of Bayesian assessment  
of  newborn  brain  maturity  from  sleep  EEG  being  represented  by  spectral  power  and  statistical  
features.  The  importance  of  these  features  has  not  been  explored  yet  in  detail  for  a  particular 
classification model such as DT. We will expect that the posterior information on EEG features will 
be effectively used within this strategy and the ensemble of DTs will be refined by discarding those 
models which exploit weak features. Similarly to the results obtained in our previous research, we will 
expect that the proposed strategy will reduce a portion of oversized DT models in the ensemble and 
the uncertainty  in  assessment  will  be  decreased  (Jakaite  & Schetinin 2008;  Jakaite,  Schetinin,  & 
Maple 2008). 

Bayesian averaging over classification models is known as a theoretical methodology of achieving 
most accurate estimation of class posterior distribution. The estimate is calculated by integration of the 
posterior distribution over model parameters by using a stochastic integration known as Markov Chain 
Monte Carlo (MCMC) integration. The use of the Bayesian methodology allows experts to obtain the 
exhaustive information on uncertainty or risks in EEG assessment of newborn’s brain. Therefore, the 
shape of the distribution becomes important for estimating the uncertainty in EEG assessment.

As part of this research, we will explore the shape of the class posterior distribution counted for a 
given PCA over DT models to answer the question whether a mismatch between the EEG estimate 
and PCA of the newborn causes a significant change in the shape. We assume that when PCA matches 
EEG estimate,  the distribution shape tends to be symmetrical  as the areas  of interests are  mainly 
located around one age category. On the contrary, for the mismatching cases the distribution becomes 
rather asymmetrical as the areas of interests are spread over different age categories. We will test our 
assumption on the EEG data to answer this question. 

Overall,  we  expect  to  achieve  the  accuracy  of  the  Bayesian  assessment  of  brain  maturity 
comparable  to  that  obtained  by  experts.  The  accurate  estimation  of  class  posterior  distribution 
provided by the Bayesian methodology will allow experts to obtain the exhaustive information on risk 
in EEG assessment of the newborn’s brain maturity. The use of DT models which are transparent for  
users will allow EEG experts make new finding in the neurological assessment of newborn brain. 
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2. Problem Statement

Typically, EEG experts assess the newborn brain maturity in terms of PCA measured in weeks. Most  
experts  agreed  that  the  physiological  ages  of  newborns  are  known  in  the  range  weeks  post 
conception.  The weeks of PCA are most often counted on the base of information obtained from a 
questionnaire of the mother. Ultrasound dating has been shown more accurate than that and normally 
undertaken on the first and second triple-months. The dates are typically replaced by the ultrasound 
estimates  if  the difference  exceeds   week in the first  triple and   weeks,  in the second triple 
(Hoffman et al. 2008). 

The newborn EEGs are typically recorded via the standard C3T3-C4T4 electrodes during a few 
sleeping hours. In our case, the EEG recordings have been made by the polysomnograph Alice 3 with  
a sampling rate 100 Hz. The raw data have been then processed with the Fast Fourier Transform over  
each 6-s epochs to be represented by the standard spectral power bands: Subdelta (0-1.5 Hz), Delta  
(1.5-3.5 Hz), Theta (3.5-7.5), Alpha (7.5-13.5), Beta 1 (13.5-19.5 Hz), and Beta 2 (19.5-25 Hz).

For  our  experiments,  the  EEG features  have  been  made  consisting  of  two groups,  basis  and 
extension ones. The features of the basis group represent the relative and absolute values of the above 
six  spectral  power  bands  calculated  for  the two electrodes  and  their  sum,  making them 36.  The 
features of the extension group represent the non-stationarity of an EEG recording estimated with our 
technique as shown in (Jakaite, Schetinin, & Schult 2011). This technique estimates the distribution of 
the pseudo-stationary intervals in EEG. Using this technique, we made the extension group of features  
including the segment rate and 10 bins of the distribution histogram of the intervals ranging from 2-s 
to 20-s. These EEG features represent the information in the time domain. In particular, using the 
combined time and frequency EEG features  has been shown improving the classification of EEG 
(Iscan, Dokur & Demiralp 2011). Finally, we added the ratio of slow-to-fast activities counted as the 
ratio of absolute spectral powers in Theta and Alpha bands, increasing the number of features in this 
group to 12. 

The two feature groups together include 48 EEG features representing the EEG epochs. For our 
experiments, each EEG recording has been represented as a vector whose elements are the average 
values calculated over all epochs in the EEG recording. This is the typical way to represent each EEG 
recording as a vector in a multidimensional input space. 

Note that although the above 48 features have been thought most informative for our experiments, 
we cannot state that there exists the prior information about the importance of either each feature or a 
feature combination considered within the given classification model. Therefore, using DT models for 
the Bayesian classification, we would explore the relative importance of the given EEG features and 
provide experts with the additional information about feature importance.

As mentioned in the Introduction, in the absence of the prior information, the results of Bayesian 
classification  will  likely  suffer  from  disproportionally  sampling  the  posterior  distribution,  as  we 
cannot expect that a multidimensional model space will be explored in detail, and the areas of interest  
will be properly explored within a reasonable time. 

Obviously,  using  DT  models  within  the  Bayesian  methodology  will  give  us  a  possibility  to 
estimate the importance of EEG features  in terms of frequency of their use. Having obtained this 
information, we could assume that if an EEG feature is rarely used in the DT ensemble, then this  
feature makes a weak contribution. Given a threshold we could find a set of such features and then 
could refine the ensemble by discarding those DTs which use these weak features. As discussed in 
(Jakaite, Schetinin, & Maple 2008), gradually increasing a threshold we can discard these DTs while 
their contribution to the ensemble outcome is negligible.  As part  of the research  we will  explore  
whether such a discarding technique is able to improve the accuracy of Bayesian assessment.

Note that  a trivial strategy of using the posterior information is to remove the identified weak 
features  from the data  set  and  then  rerun  the  Bayesian  classification.  Clearly,  this  will  reduce  a  
dimensionality of the problem and therefore a dimensionality of a model parameter space so that the 
areas of interests will be explored in more detail. However, the use of this strategy is limited by the 
computational power and time required for MCMC integration. Therefore,  it will be interesting to 
compare the proposed discarding technique and this rerunning strategy in terms of the accuracy of 
assessment.
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3. Bayesian Averaging over Decision Tree Models 

For  a  DT given  with  parameters   ,  the  predictive  distribution  is  written  as  an  integral  over  the 
parameters 

,|(),,|(),|( θD)θDθxDx dpypyp 




where y is the predicted class (1, …, C), x = (x1, …, xm) is the m-dimensional input vector , and D are 
the given labeled (or training) data.

This integral can be analytically calculated only in trivial cases. In practice, part of the integrand, 
the posterior density of   conditioned on the data D,  p( |D), cannot usually be evaluated. However, 
using (1), …, (N) as the samples drawn from the posterior distribution p( |D), we can write:

.),,|(
1

)|(),,|(),|(
1

)()(

1

)( 



N

i

ii
N

i

i yp
N

pypyp DθxDθDθxDx

The above integral can be approximated by using a MCMC integration technique as described in 
(Chipman, George, & McCullock 1998; Denison et al. 2002). To perform such an approximation, we 
need to run a Markov Chain until it has converged to a stationary distribution. Then we can collect N 
random samples from the posterior p( |D) to calculate the desired predictive posterior density.

Using DTs for the classification, we need to find the probability with which an input x is assigned 
by a terminal node to the jth class. The DT parameters are defined by si

pos, si
var, si

rule, i = 1, …, k – 1, 
where si

pos, si
var, and si

rule define the position, predictor and rule of each splitting node, respectively, and 
k is the number of terminal nodes. Having defined the parameters of a Markov Chain, we can specify  
the priors for the MCMC integration as follows. First, a maximal number of splitting nodes in DTs 
can be specified to be, for example, smax = n – 1. Second we can draw any of the m attributes from a 
uniform discrete distribution U(1, …, m) and assign si

var {1, …, m}. Ultimately, a candidate value for 
the splitting variable xj = si

var can be drawn from a discrete distribution U(xj(1), …, xj(L)), where L is 
the number of possible splitting rules for variable xj.

The use of these priors allows us to explore DTs which split data in as many ways as possible.  
Note  that  the  DTs  with  different  numbers  of  splitting  nodes  should  be  explored  in  the  same 
proportions. 

The number of splitting nodes can vary and therefore the MCMC has to integrate over a model 
parameter space of a variable dimensionality. For such integration, the MCMC technique is extended 
by Reversible Jump (RJ). The implementation of RJ MCMC integration over DT models has been 
proposed in (Chipman, George, & McCullock 1998; Denison et al. 2002) by using the following four 
moves:

Birth move randomly splits the data points falling in one of the DT terminal nodes by inserting a  
new splitting node with a variable and rule drawn from the given priors.

Death move randomly picks a DT splitting node with two terminal splits and then assigns it to be 
one terminal node with the united data points.

Change-split move randomly picks a splitting node and assign it to be with a new splitting variable 
and rule drawn from the given priors.

Change-rule move randomly picks a splitting node and assign it to be with a new rule drawn from 
the given prior.

We can see that  the first  two moves,  birth and death,  reversibly change the dimensionality of 
model parameter space. The third and fourth moves change the model parameters within a current  
dimensionality. Specifically, the change-split move enables to make “large” jumps which potentially 
increase the chance of sampling from areas of a maximum posterior whilst the change-rule move does  
“local” jumps.

The RJ MCMC technique starts drawing samples from a DT consisting of one splitting node with 
the parameters randomly assigned within the predefined priors. While a DT grows, its likelihood is  
increased and then tends to oscillate around a stable value. This phase is named burn-in and must be  
preset sufficiently long in order to achieve the stable posterior distribution. During the second phase  

4



named post burn-in, the samples of the posterior distribution are collected for approximation of the 
desired class-posterior distribution. 

4. Curing the Ensemble 

As discussed  in  the  Introduction,  results  of  MCMC integration  over  DT models  can  suffer  from 
disproportional  sampling.  The  proposed  method  aims  at  refining  an  ensemble  of  DT models  by 
discarding those models which use weak EEG features. The weak features are defined as those whose 
posterior probabilities of use in the DT ensemble do not exceed a given threshold. Clearly, we can 
count  these  probabilities  when  an  ensemble  of  DT  models  has  been  collected  during  MCMC 
integration. The probabilities of using features are normally interpreted as feature importance within a  
given classification model.

Having obtained the information about feature importance, we need to set a threshold, a maximal 
probability, for which features are defined weak. Such a threshold can be easily found, if we sort out  
the features in an order of ascending importance. 

To begin, the first feature with the least importance is selected as a candidate. 
At the second stage, we find all DT models included in the ensemble which exploit this feature.  

Having found such DT models, we then label them as a set of candidates for discarding from the  
ensemble as weak models. 

At  the  third  stage,  the  set  of  candidate  models  is  removed  from  the  ensemble,  and  then  its 
performance is tested on the given data. 

Finally,  at  fourth stage,  the proposed change is made accepted  if its  performance in terms of 
assessment accuracy and ensemble entropy remains within a given confidence interval (normally 2-
sigma interval).  If  accepted,  the next feature is selected from the list  of ordered features,  and the 
second stage is repeated. Otherwise, the algorithm ends up with the desired threshold. 

Obviously,  the  larger  the  threshold,  the  greater  number  of  features  is  defined  as  weak,  and 
therefore  the larger  portion of DT models  is  discarded.  In the following section, we describe the 
experiments with the proposed technique of refining a DT ensemble obtained within the Bayesian  
model averaging framework presented in the previous section.

5. Experiments

In our experiments, we used EEG data recorded from newborns during sleep hours in clinics. All the  
recordings have been assessed by EEG experts. The data were represented with a set of EEG features  
described in the above section 2. The newborns were assigned in 10 age groups or classes according to 
their weeks of PCA. We run these experiments first to test our assumptions described in sections 1 and 
2 and second to test  the  proposed method described  in  section  4.  The tests  are  made within the 
Bayesian methodology of averaging over DT models. 

5.1 EEG Data and Settings

In our experiments we used 952 EEG recordings obtained in different clinics from newborns of age  
from 36 to 45 weeks of PCA as described in section 2. Each of the 10 age groups has been made  
including  around  100  recordings.  All  the  recordings  were  additionally  tested  on  the  presence  of 
electrode move artifact causing a significant change or shift in EEG amplitude. The EEG recordings 
were also automatically tested on the presence of abnormal active or quiet sleep phases as well as of 
abnormal level of artifacts as we described in (Schetinin, Jakaite & Schult 2011). 

The settings for running the Bayesian classification were made as follows. The number of DTs 
sampled in the burn-in phase was 100,000, and in a post burn-in phase 10,000. During the post burn-in 
phase each 10th model was collected in order to reduce the correlation between DT models. The 
minimal number of  data samples  allowed to be in  DT nodes (or  pruning factor)  was set  to  five. 
Proposal variance was 1.0, and probabilities of making moves of birth, death, change-variable, and 
change-rule were set to 0.15, 0.15, 0.1, and 0.6, respectively. The performance and uncertainty of the 
DT ensemble collected in the post burn-in phase were evaluated within a 10-fold cross-validation. 
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Using the above settings for  MCMC integration,  we found that  the rate  of  acceptance  of  DT 
models during the integration was around 0.23 in both phases. In the burn-in phase, the size of DTs  
was  stabilized  around 65 nodes  after,  on average,  10,000 samples,  so that  the  remaining 90,000 
samples were drawn from almost stable Markov Chain. 

5.2 Importance of EEG features 

As discussed in the Introduction, using DT models for classification within the Bayesian methodology 
allows us to count the importance of the EEG features in terms of the posterior probabilities of their  
use in DT ensemble. Fig. 1 shows the posterior probabilities of using all 48 EEG features in the basis  
(upper plot) and extension (lower plot) groups. 

Fig. 1. Importance (posterior probabilities) of 48 EEG features characterising the relative and absolute 
spectral powers (upper plot) and the Theta-to-Alpha ratio and EEG non-stationarity (lower plot)

First, we see the importance of the features ranges between 0.0025 (AbsSubdeltaC3T3) and 0.078 
(Theta/Alpha Ratio).  Second,  we observe  that  not  all  the  features  of  the basis  group are  equally 
important,  only 12 out of the 36 features are of the importance greater than 0.02. In contrast, the 
importance of all the features of the extension group is higher than that. 

5.3 Refining the Ensemble 

As discussed above, DTs collected in an ensemble use the EEG features in different combinations and 
thus  the  posterior  probabilities  of  using  them  are  different.  The  above  Fig.1  shows  that  the  
probabilities or importance of the given features vary in a wide range. Some of the features with low 
importance  are  probably  weak  to  make  a  distinguishable  contribution  to  the  classification.  As 
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discussed in section 4, we can assume that discarding DTs using such weak features will improve the 
performance within the proposed method. 

According to this method, we gradually increased the threshold T from 0 to 0.006 and then defined 
weak features. Table 1 shows the performance P, entropy E of the ensemble, and number k of EEG 
features found weak versus the threshold T; here k is the average over 10 folds. We can see that when 
the threshold T = 0.003, the number of weak features is k = 8, and when T = 0.005, k increases to 12. 

Table 1. Performance P, entropy E, and number of weak features k versus threshold T 

T k P, %                     E

0.001 4 30.6±12.8 198.8±10.7

0.002 6 30.8±13.6 198.0±11.1

0.003 8 30.8±14.5 197.6±11.2

0.004 10 30.0±14.7 195.7±11.2

0.005 12 29.3±13.0 191.9±14.1

0.006 13 30.0±13.7 190.8±13.2

Fig.  2  shows  the  average  performance  and  entropy  obtained  with  the  ensembles  refined  by 
discarding the 4, 6, 8, 10, 12, and 13 weak features, respectively. We see that the performance median 
slightly increases from 31% to 34% when the threshold is changed from 0 to 0.003. The uncertainty  
counted  in  terms  of  entropy  of  an  ensemble  is  slightly  decreased  from  198.9  to  197.6.  Further 
increasing the threshold to 0.006 leads to discarding 13 weak features without a significant drop in the  
performance. Clearly, the removal 13 out of 48 features makes the DT ensemble shorter and easier for 
interpretation; the expected number of rules must be decreased roughly on 1/3.  

Fig. 2. Performance and Entropy over threshold T

We could assume that the rerun in the sense of retrain of the Bayesian classification on a data set 
without weak features will improve the performance. Indeed, the removal of weak features leads to 
reducing the dimensionality of the problem and subsequently to reducing the dimensionality of a  
model parameter space. However, when we reran the classification on a new data set without the eight 
weak features found at threshold of 0.003, we observed that the average performance was 27.1±6.9% 
and entropy 201.5±16.9. Because of extensive computations, we were limited to rerun the Bayesian  
classification on the other updated data sets. Nevertheless, we observe that the proposed technique 
outperformed the rerun strategy keeping the performance high and saving the computational time. 

The box plots  in  Fig.  3  show the  average  numbers  of  DT splits  for  the  original  and  refined 
ensembles as well as for the discarded DTs. The original ensemble included 10,000 DTs, but after  
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refining it included 5,800 DTs. We see that the median number of splits in the discarded set of DTs is 
66.3, which is higher than that in the original ensemble. The median number of splits in the refined 
ensemble decreases to 65.5, as the portion of larger DTs has been removed. In the next subsections we 
will explore the accuracy of the refined ensemble of DTs. 

Fig. 3. Average number of DT splits in the ensembles

5.3 Extraction of Rules

It is important to note that DTs are hierarchical models which use features at different levels of the  
hierarchy, and therefore the use of a feature is defined by a chain from the DT root to a node testing 
the feature. In other words, the use of features in DT nodes has to be considered in the context of 
using the other features. 

For  illustration,  let  us  show  the  fragments  of  the  Maximum  Posterior  DT  derived  from  the 
ensemble. This DT includes 70 nodes convertible into 71 probabilistic rules.  Being limited in the  
space, we provide the seven rules for 36-week class (C=1) and the six rules for 45-week class (C=10)  
in the following notation:

C=1
 N(1,1),N(2,0),N(3,1),N(4,0),N(5,0) -> 0.640
 N(1,1),N(2,0),N(3,0),N(6,0) -> 0.455
 N(1,1),N(2,1),N(7,1),N(8,0),N(9,0),N(10,0) -> 0.556
 N(1,1),N(2,1),N(7,0),N(11,0),N(12,0),N(13,0) -> 0.571
 N(1,1),N(2,0),N(3,1),N(4,0),N(5,1),N(14,1),N(15,0),N(16,1) -> 0.600
 N(1,1),N(2,1),N(7,0),N(11,0),N(12,0),N(13,1) -> 0.250
 N(1,1),N(2,0),N(3,0),N(6,1),N(17,1) -> 0.667
C=10
 N(1,0),N(18,1),N(34,1),N(48,1),N(56,1),N(57,0),N(58,0),N(60,0) -> 0.500
 N(1,0),N(18,1),N(34,0),N(35,0),N(39,1),N(63,0),N(70,0) -> 0.500
 N(1,0),N(18,1),N(34,1),N(48,1),N(56,1),N(57,1),N(67,0),N(68,0) -> 0.727
 N(1,0),N(18,1),N(34,1),N(48,1),N(56,1),N(57,0),N(58,1),N(59,1) -> 0.875
 N(1,0),N(18,1),N(34,1),N(48,1),N(56,1),N(57,1),N(67,1) -> 0.562
 N(1,0),N(18,1),N(34,1),N(48,0),N(49,1),N(66,1) -> 0.400

Here:  N(1,*) = <38, 0.622>, N(2,*) = <41, 0.067>, N(3,*) = <22, 0.116>, N(4,*) = <16, 0.668>, 
N(5,*) = <43, 0.006>, N(6,*) = <33, 0.002>, N(7,*) = <23, 0.109>, N(8,*) = <22, 0.139>, N(9,*) =  
<37, 4.332>, N(10,*) = <3, 0.585>, N(11,*) = <2, 0.769>, N(12,*) = <14, 0.084>, N(13,*) = <40,  
0.183>,  N(14,*)  =  <20,  0.011>,  N(15,*)  =  <41,  0.063>,  N(16,*)  =  <26,  0.015>,  N(17,*)  = <27,  
0.013>,  N(18,*)  =  <43,  0.021>,  N(34,*)  =  <45,  0.012>,  N(35,*)  =  <23,  0.110>,  N(38,*)  = <29,  
0.049>,  N(39,*)  =  <45,  0.011>,  N(48,*)  =  <16,  0.506>,  N(56,*)  =  <44,  0.018>,  N(57,*)  = <45,  
0.016>, N(58,*) = <11, 5.797>, N(59,*) = <13, 0.037>, N(60,*) = <37, 7.099>, N(63,*) = <3, 0.593>, 
N(66,*) = <10, 2.722>, N(67,*) = <16, 0.924>, N(68,*) = <1, 0.637>, N(69,*) = <41, 0.103>, N(70,*) 
= <37, 6.866>.

To illustrate the above rules, let us define N(i,b) = <v,q> as the ith node which takes threshold q to 
test feature v: if the value of the feature exceeds the threshold, then b = 1 and an input falls into the 
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right branch of the  ith node; otherwise,  b = 0 and the input falls into the left branch. For example, 
N(1,*) = <38, 0.622> denotes the root node which compares variable #38 with threshold 0.622. 

Let us also define a chain of nodes between the root and a terminal node as a rule providing a  
probability that a given input of the true class. For example, we can define a rule of class 1 as N(1,1), 
N(2,0),  N(3,1),  N(4,0),  N(5,0)  ->  0.640,  consisting  of  the  five  nodes  which  test  variables  in  the 
following sequence <38, 0.622>, <41, 0.067>, <22, 0.116>, <16, 0.668>, <43, 0.006>. A given input  
finally falls into the left branch of 5th terminal node with probability 0.64. The value p = 0.64 of this 
probability is relatively high, as the alternative probabilities to be of a false class is roughly (1 – p)/(1 
– c) = 0.04, where c = 10 is the number of classes.

Note that the above DT has been selected for the exact matching weeks. Obviously, this DT can be 
transformed to be used for EEG assessments within the other intervals ±1 and ±2 weeks. 

5.4 Performance of EEG Assessment 

Having  obtained  an  ensemble  of  DT  models,  we  calculated  the  performance  of  the  Bayesian 
assessment  within  the  10-fold  cross-validation.  The  calculation  requires  to  count  the  number  of 
newborns for which EEG estimates match their physiological ages of PCA. The matches were counted 
within the following three intervals: 0 week (exact match), ±1 weeks, and ±2 weeks. The ratio of these 
matches (that is the performance) within each of these intervals were 30.1% , 65.5%, and 85.1%, 
respectively.  As discussed in section 2,  the neurological  assessment  of newborn brain maturity is  
mainly made within ±2 weeks of PCA. 

Table 2 shows the spread of age classifications over the given age groups from 36 to 45 weeks of 
PCA. The table columns present the numbers of classifications fallen into the age groups ranged from 
-6 to +7 weeks. Thus Column 0 shows the numbers of classifications fallen into the actual age groups 
(exact matches), Column -1 shows the number of classifications fallen into an age group which is less  
than the actual age group on one week, Column -2 -- less than on two weeks, etc. 

Table 2. Spread of age classifications

Mismatch (weeks)

PCA -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 Total
36 46 24 11 5 3 2 0 1 92
37 32 33 16 10 5 3 1 0 0 100
38 18 29 18 15 5 3 2 1 1 0 92
39 8 9 10 15 17 13 5 3 2 1 83
40 4 5 6 11 26 16 14 6 2 2 92
41 1 5 2 11 15 26 15 10 3 3 91
42 0 2 2 6 16 12 18 17 15 12 100
43 1 1 3 10 9 19 14 19 23 99
44 0 0 3 14 12 10 35 29 103
45 2 2 1 3 5 25 62 100

Total 3 6 18 48 86 163 293 168 101 39 16 8 2 1 952

The Total column presents the number of EEG recordings in each age group. This column shows 
that the numbers of recordings in each group are similar. The Total row shows the numbers of age  
classifications fallen in the age groups ranged between -6 and +7. 

Table  3 shows  the  performance  of  the  expert  assessment  of  EEG  maturation  described  in 
(Parmelee et al. 1968) together with the performance of the Bayesian assessment calculated within the 
same five age groups from 39 to 43 weeks of PCA within the ranges ±1 and ±2 weeks. Note that these 
results have been obtained on different EEG recordings and different sample sizes: we used the 465 
recordings (in the above five age groups), whilst the experts have assessed only 47 recordings. 

Table 3. Performances of expert and Bayesian assessment within the two intervals

Interval, weeks Expert, % Bayesian classification, %
±1 59.5 53.7
±2 77.3 80.8
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Such  a  difference  in  the  sample  sizes  does  not  allow  us  to  compare  the  results  directly. 
Nevertheless, we observe that the Bayesian assessment within ±2 week interval, on average, slightly 
outperforms the expert assessment. 

It  is  important  to  note  that  an EEG assessment  obtained  within the Bayesian methodology is 
provided with an accurate estimate of the uncertainty as we discussed in the Introduction. Below we 
describe our experiments and results in estimating the uncertainty for EEG assessment. 

5.5 Estimation of Uncertainty 

In  this  subsection  we  describe  how  the  estimates  of  uncertainty  obtained  within  the  Bayesian 
assessment can assist experts to reduce possible errors. Having obtained an ensemble of DT models,  
first we calculate the desired estimates by using the original ensemble and then explore whether the  
estimates are improved by using the refined ensemble. 

Second we explore the class posterior probabilities obtained within the Bayesian assessment for 
patients assigned in different age groups. The assignments can be made matching or mismatching the  
stated PCA. As discussed in sections 1 and 2, within our research we consider a mismatch as the case  
of abnormal newborn's brain maturity, and therefore it is important to identify risk of the mismatch by 
analysing the posterior probability.

In our experiments we used the ensemble of DTs obtained on the 857 cases to test the other 95 
cases, roughly equally distributed over the 10 age groups of PCA. According to the spread of age 
classification given in subsection 5.4, a few EEG assessments were found mismatched the PCA within 
the ±2 week interval. Therefore we expect that the class posterior probability distribution obtained for 
a mismatched case  differs  from that  obtained for a matched case.  To justify this assumption, we  
selected two cases of 6th class (41 weeks of PCA), one matching and the other mismatching the stated 
newborn's PCA. 

Fig. 4 and 5 show the class posterior probabilities for these cases. Here, the left side plots show the 
class posterior probability distribution over the 10 classes within the 1 intervals computed over all 
the DTs included in the original ensemble. 

Fig. 4. Probability distributions estimated for matching case 

From the left side plot of Fig. 4, we observe that the case belongs to the true class 6 with the 
average probability of 0.36, and with a slightly less probability this case belongs to class 5. Observing 
the intervals of these probabilities, we find that the EEG estimate matches the stated PCA within the  
acceptable  interval  of  one week and thus we make the conclusion that  the brain maturity of this  
newborn is normal. 

The middle plot  in Fig.  4 shows a distribution of all  the DTs over probabilities  that  the case 
belongs to the true class 6. The average over this distribution gives us the maximal class posterior  
probability 0.36, observed in the left plot. The right side plot summarises the distribution and shows 
that its shape is rather symmetrical on the both sides of the median. 

Let us now examine the probability distributions for the mismatching case shown in Fig. 5. In the 
left plot, we observe that this case can be wrongly assigned to the false class 1 with probability of  
0.25. We also observe that the probabilities of classes 5, 6, 7 and 9 lie within the interval of class 1,  
and therefore we cannot make a confident conclusion on this case.  The middle plot in this figure  
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shows a distribution of all the DTs over probabilities that the case belongs to class 6 stated for this 
newborn, and the right side boxplot shows that the shape of this distribution is clearly asymmetrical.

Fig. 5. Probability distributions estimated for mismatching case 

The above two cases  illustrate  the use of  the class posterior  probability  distributions obtained 
within the Bayesian methodology for estimating the uncertainty and reducing the risk of  possible 
error. We observed that the distribution counted for the stated newborn's PCA (shown in the middle 
plots)  becomes  asymmetrical  when  an  EEG  assessment  mismatches  a  newborn's  PCA.  The 
uncertainty can be quantitatively represented, and the shape asymmetry can be visually recognized. 

As described in the previous subsection, the refined ensemble of DT models has improved the 
performance of EEG assessment, and therefore we can observe the corresponding changes in the class 
posterior  distributions.  Fig  6  shows these probabilities obtained with the refined ensemble for the 
above two cases. 

Fig. 6. Probability distributions estimated with the refined ensemble of DTs for matching 
(upper plot) and mismatching (lower plot) cases

The comparison shows that the average probabilities of classes 5 and 6 shown in the upper plot of  
Fig. 6 are slightly greater than those shown in Fig. 4 while their intervals are slightly smaller. As a  
result,  using  the  refined  ensemble  decreases  the  uncertainty  of  EEG  assessment.  Comparing  the 
posterior distribution obtained with the refined ensemble for the mismatching case shown in the lower 
plots of Fig. 6 and those obtained with the original ensemble (Fig. 5), we observe a similar decrease in  
the uncertainty of EEG assessment.
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6. Conclusions 

We explored how the posterior information about EEG features can be used for improving the results 
of assessment of newborns' brain maturity obtained within the methodology of Bayesian averaging 
over DT models. We assumed that the posterior information about feature importance can be used to 
find weak EEG features. According to this assumption, part of DT models included during MCMC 
integration in the ensemble use such weak features and thus do not make a significant contribution to  
the assessment. 

We also observed that during the MCMC integration a candidate DT model, being assigned by 
chance to use a weak feature, can be accepted even with a decrease in its likelihood. In the presence of 
many  weak  features,  such  models  will  likely  be  disproportionally  represented  in  the  ensemble. 
Therefore  discarding  such  DT  models  from  the  ensemble  within  the  proposed  technique  could 
improve the EEG assessment. 

The proposed technique has been tested on the EEG data recorded from newborns in the 10 groups 
of  PCA.  In  our  experiments  the  proposed  technique  has  been  shown  capable  of  improving  the 
proportions of DT models in the ensemble and as a result improving the performance of Bayesian 
assessment of newborn's brain maturity.

The results obtained with the proposed technique have been compared to those obtained by trivial  
rerunning  the  Bayesian  assessment  on  a  data  set  without  weak  features.  We  expected  that  the 
reduction of  dimensionality  of  a  model  parameter  space  needed to be explored  will  improve the 
results. However the rerunning strategy has not been shown providing better performance that that 
provided with the proposed technique.

We also showed that an ensemble of DT models can be reasonably represented by a single DT 
providing the Maximum Posterior as a set of probabilistic rules transparent for experts. Each rule is 
formulated as a sequence of logical terms describing a chain between the DT root and one of the DT  
terminal nodes. 

We expected to achieve the accuracy of the Bayesian assessment of brain maturity comparable to 
that obtained by experts. Although the EEG recordings used in our experiments were different, we 
found that the Bayesian assessments slightly outperform the expert assessments made in the same age 
groups. 

We  also  expected  to  obtain  the  accurate  estimation  of  class  posterior  distribution  within  the 
Bayesian assessment to provide experts with the exhaustive information on risk in EEG assessment of 
the newborn’s  brain.  Finally, in our experiments,  we showed that the Bayesian assessment of the  
posterior probabilities are accurate and can be used for evaluating the risk of possible errors. 
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