112 research outputs found

    New developments in the representation of Saharan dust sources in the aerosol–climate model ECHAM6-HAM2

    Get PDF
    In the aerosol–climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT).<br><br>The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters.<br><br>An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions

    Wildfires as a source of airborne mineral dust - Revisiting a conceptual model using large-eddy simulation (LES)

    Get PDF
    Airborne mineral dust is a key player in the Earth system and shows manifold impacts on atmospheric properties such as the radiation budget and cloud microphysics. Investigations of smoke plumes originating from wildfires found significant fractions of mineral dust within these plumes - most likely raised by strong, turbulent fire-related winds. This study presents and revisits a conceptual model describing the emission of mineral dust particles during wildfires. This is achieved by means of high-resolution large-eddy simulation (LES), conducted with the All Scale Atmospheric Model (ASAM). The impact of (a) different fire properties representing idealized grassland and shrubland fires, (b) different ambient wind conditions modulated by the fire's energy flux, and (c) the wind's capability to mobilize mineral dust particles was investigated. Results from this study illustrate that the energy release of the fire leads to a significant increase in near-surface wind speed, which consequently enhances the dust uplift potential. This is in particular the case within the fire area where vegetation can be assumed to be widely removed and uncovered soil is prone to wind erosion. The dust uplift potential is very sensitive to fire properties, such as fire size, shape, and intensity, but also depends on the ambient wind velocity. Although measurements already showed the importance of wildfires for dust emissions, pyro-convection is so far neglected as a dust emission process in atmosphere-aerosol models. The results presented in this study can be seen as the first step towards a systematic parameterization representing the connection between typical fire properties and related dust emissions

    The Dust Emission Potential of Agricultural-Like Fires—Theoretical Estimates From Two Conceptually Different Dust Emission Parameterizations

    Get PDF
    Agricultural fires affecting grass-, crop- and shrublands represent a major, mainly anthropogenically driven disturbance of many ecosystems. In addition to emissions of carbonaceous aerosol, they were found to inject also mineral dust particles into the atmosphere. The fires can significantly modulate the near-surface wind patterns so that conditions suitable for dust emission occur. However, the exact emission mechanism has not been investigated so far, but is inevitable for the understanding of its impacts on the Earth system. Here, we test two dust emission parameterizations representing saltation bombardment (SALT) and direct aerodynamic dust entrainment by (convective) turbulence (convective turbulent dust emission, CTDE) in the context of fire-modulated wind patterns using large-eddy simulation with an idealized setup to represent typical agricultural fire settings. Favorable aerodynamic preconditions for the initialization of both emission processes are found, however, with sometimes significant differences in dust emission flux depending on specific wind and fire properties. The strong fire-induced modulations of the instantaneous momentum flux suggest that CTDE can be a very potent emission process in the fire vicinity. Nevertheless, fire impacts on the friction velocity can be significant too, so that dust emission through SALT is facilitated as well. Ultimately, the specific aerodynamic conditions within pyro-convectively modulated wind patterns require the development of a parameterization that can describe these unique fire-related dust emissions and their influencing factors properly. This will finally allow for considering fire-induced dust emissions in aerosol-atmosphere models and an investigation of its atmospheric impacts such as on the radiation budget

    The Dust Emission Potential of Agricultural-Like Fires—Theoretical Estimates From Two Conceptually Different Dust Emission Parameterizations

    Get PDF
    Agricultural fires affecting grass-, crop- and shrublands represent a major, mainly anthropogenically driven disturbance of many ecosystems. In addition to emissions of carbonaceous aerosol, they were found to inject also mineral dust particles into the atmosphere. The fires can significantly modulate the near-surface wind patterns so that conditions suitable for dust emission occur. However, the exact emission mechanism has not been investigated so far, but is inevitable for the understanding of its impacts on the Earth system. Here, we test two dust emission parameterizations representing saltation bombardment (SALT) and direct aerodynamic dust entrainment by (convective) turbulence (convective turbulent dust emission, CTDE) in the context of fire-modulated wind patterns using large-eddy simulation with an idealized setup to represent typical agricultural fire settings. Favorable aerodynamic preconditions for the initialization of both emission processes are found, however, with sometimes significant differences in dust emission flux depending on specific wind and fire properties. The strong fire-induced modulations of the instantaneous momentum flux suggest that CTDE can be a very potent emission process in the fire vicinity. Nevertheless, fire impacts on the friction velocity can be significant too, so that dust emission through SALT is facilitated as well. Ultimately, the specific aerodynamic conditions within pyro-convectively modulated wind patterns require the development of a parameterization that can describe these unique fire-related dust emissions and their influencing factors properly. This will finally allow for considering fire-induced dust emissions in aerosol-atmosphere models and an investigation of its atmospheric impacts such as on the radiation budget

    How important are cyclones for emitting mineral dust aerosol in North Africa?

    Get PDF

    Wildfires as a source of airborne mineral dust – revisiting a conceptual model using large-eddy simulation (LES)

    Get PDF
    Airborne mineral dust is a key player in the Earth system and shows manifold impacts on atmospheric properties such as the radiation budget and cloud microphysics. Investigations of smoke plumes originating from wildfires found significant fractions of mineral dust within these plumes – most likely raised by strong, turbulent fire-related winds. This study presents and revisits a conceptual model describing the emission of mineral dust particles during wildfires. This is achieved by means of high-resolution large-eddy simulation (LES), conducted with the All Scale Atmospheric Model (ASAM). The impact of (a) different fire properties representing idealized grassland and shrubland fires, (b) different ambient wind conditions modulated by the fire's energy flux, and (c) the wind's capability to mobilize mineral dust particles was investigated. Results from this study illustrate that the energy release of the fire leads to a significant increase in near-surface wind speed, which consequently enhances the dust uplift potential. This is in particular the case within the fire area where vegetation can be assumed to be widely removed and uncovered soil is prone to wind erosion. The dust uplift potential is very sensitive to fire properties, such as fire size, shape, and intensity, but also depends on the ambient wind velocity. Although measurements already showed the importance of wildfires for dust emissions, pyro-convection is so far neglected as a dust emission process in atmosphere–aerosol models. The results presented in this study can be seen as the first step towards a systematic parameterization representing the connection between typical fire properties and related dust emissions.</p

    How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?

    Get PDF
    This study presents the first quantitative estimate of the mineral dust emission associated with atmospheric depressions and mobile cyclones in North Africa. Atmospheric depressions are automatically tracked at 925 hPa based on ERA-Interim data from the European Centre for Medium-Range Weather Forecasts for 1989–2008. A set of filter criteria is applied to identify mobile cyclones, i.e. migrating and long-lived cyclones. The shorter term cyclone is used as a synonym for mobile cyclones. Dust emission is calculated with a dust emission model driven by 10 m winds and soil moisture from ERA-Interim. Emission peaks during winter and spring with spatial averages of 250–380 g m&minus;2 per month. Comparison of the dust source activation frequency from the model against SEVIRI satellite observation shows a good agreement in the Bodélé Depression but differences in the north and west of North Africa. Depressions are abundant, particularly in summer when the Saharan heat low is situated over West Africa and during spring in the lee of the Atlas Mountains. Up to 90% (55% annually and spatially averaged) of dust emission occurs within 10 degrees of these depressions, with embedded mechanisms such as nocturnal low-level jets playing a role. Cyclones are rarer and occur primarily north of 20° N in spring in agreement with previous studies and over summertime West Africa consistent with near-surface signatures of African Easterly Waves. Dust emission within 10 degrees of cyclones peaks over Libya with up to 25% in spring. Despite the overall small contribution of 4% annually and spatially averaged, cyclones coincide with particularly intense dust emission events exceeding the climatological mean by a factor of four to eight. Soil moisture weakens dust emission during cyclone passage by about 10%
    • …
    corecore