1,333 research outputs found

    Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    Get PDF
    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighbouring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. We present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on sub-nanometer precision in donor placement and is robust against noise in the control fields. We use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.Comment: Published version - more detailed discussions, robustness to dephasing pointed out additionall

    Spin Coherence and 14^{14}N ESEEM Effects of Nitrogen-Vacancy Centers in Diamond with X-band Pulsed ESR

    Full text link
    Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV^-) in diamonds at X-band magnetic fields (280-400 mT) and low temperatures (2-70 K). The NV^- centers in synthetic type IIb diamonds (nitrogen impurity concentration <1<1~ppm) are prepared with bulk concentrations of 210132\cdot 10^{13} cm3^{-3} to 410144\cdot 10^{14} cm3^{-3} by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000^\circC for 60 mins) is critically important to repair the radiation damage and to recover long electron spin coherence times for NV^-s. After the annealing, spin coherence times of T2=0.74_2 = 0.74~ms at 5~K are achieved, being only limited by 13^{13}C nuclear spectral diffusion in natural abundance diamonds. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central 14^{14}N nucleus. The ESEEM spectral analysis allows for accurate determination of the 14^{14}N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal 13^{13}C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective 13^{13}C hyperfine coupling constants are extracted.Comment: 10 pages, 5 figure

    Analysis of genetic diversity in Brown Swiss, Jersey and Holstein populations using genome-wide single nucleotide polymorphism markers

    Get PDF
    BACKGROUND: Studies of genetic diversity are essential in understanding the extent of differentiation between breeds, and in designing successful diversity conservation strategies. The objective of this study was to evaluate the level of genetic diversity within and between North American Brown Swiss (BS, n = 900), Jersey (JE, n = 2,922) and Holstein (HO, n = 3,535) cattle, using genotyped bulls. GENEPOP and FSTAT software were used to evaluate the level of genetic diversity within each breed and between each pair of the three breeds based on genome-wide SNP markers (n = 50,972). RESULTS: Hardy-Weinberg equilibrium (HWE) exact test within breeds showed a significant deviation from equilibrium within each population (P < 0.01), which could be a result of selection, genetic drift and inbreeding within each breed. Hardy-Weinberg test also confirmed significant heterozygote deficit in each breed over several loci. Moreover, results from population differentiation tests showed that the majority of loci have alleles or genotypes drawn from different distributions in each breed. Average gene diversity, expressed in terms of observed heterozygosity, over all loci in BS, JE and HO was 0.27, 0.26 and 0.31, respectively. The proportion of genetic diversity due to allele frequency differences among breeds (F(st)) indicated that the combination of BS and HO in an ideally amalgamated population had higher genetic diversity than the other pairs of breeds. CONCLUSION: Results suggest that the three bull populations have substantially different gene pools. BS and HO show the largest gene differentiation and jointly the highest total expected gene diversity compared to when JE is considered. If the loss of genetic diversity within breeds worsens in the future, the use of crossbreeding might be an option to recover genetic diversity, especially for the breeds with small population size

    Characteristics of linkage disequilibrium in North American Holsteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effectiveness of genomic selection and fine mapping is determined by the level of linkage disequilibrium (LD) across the genome. Knowledge of the range of genome-wide LD, defined as a non-random association of alleles at different loci, can provide an insight into the optimal density and location of single-nucleotide polymorphisms (SNPs) for genome-wide association studies and can be a keystone for interpretation of results from QTL mapping.</p> <p>Results</p> <p>Linkage disequilibrium was measured by |D'| and r<sup>2 </sup>between 38,590 SNPs (spaced across 29 bovine autosomes and the X chromosome) using genotypes of 887 Holstein bulls. The average level of |D'| and r<sup>2 </sup>for markers 40-60 kb apart was 0.72 and 0.20, respectively in Holstein cattle. However, a high degree of heterogeneity of LD was observed across the genome. The sample size and minor allele frequency had an effect on |D'| estimates, however, r<sup>2 </sup>was not noticeably affected by these two factors. Syntenic LD was shown to be useful for verifying the physical location of SNPs. No differences in the extent of LD and decline of LD with distance were found between the intragenic and intergenic regions.</p> <p>Conclusions</p> <p>A minimal sample size of 444 and 55 animals is required for an accurate estimation of LD by |D'| and r<sup>2</sup>, respectively. The use of only maternally inherited haplotypes is recommended for analyses of LD in populations consisting of large paternal half-sib families. Large heterogeneity in the pattern and the extent of LD in Holstein cattle was observed on both autosomes and the X chromosome. The extent of LD was higher on the X chromosome compared to the autosomes.</p

    Detection of low energy single ion impacts in micron scale transistors at room temperature

    Get PDF
    We report the detection of single ion impacts through monitoring of changes in the source-drain currents of field effect transistors (FET) at room temperature. Implant apertures are formed in the interlayer dielectrics and gate electrodes of planar, micro-scale FETs by electron beam assisted etching. FET currents increase due to the generation of positively charged defects in gate oxides when ions (121Sb12+, 14+, Xe6+; 50 to 70 keV) impinge into channel regions. Implant damage is repaired by rapid thermal annealing, enabling iterative cycles of device doping and electrical characterization for development of single atom devices and studies of dopant fluctuation effects

    Importance of species‐specific antigens in the serodiagnosis of Chlamydia trachomatis reactive arthritis

    Get PDF
    Objectives. To determine the most sensitive and specific method of anti‐Chlamydia antibody measurement for the serodiagnosis of Chlamydia trachomatis reactive arthritis. Methods. Immunoblotting, enzyme‐linked immunosorbent assays using six synthetic peptides or recombinant antigens and a microimmunofluorescence test were used to determine the presence of IgG, IgM and IgA in serum samples from 17 patients with C. trachomatis reactive arthritis. Twenty patients with other inflammatory arthropathies without evidence of urogenital C. trachomatis infection were used as controls. Results. The best association of sensitivity (76%) and specificity (85%) was obtained when IgG and/or IgA reactivity to two species‐specific antigens was determined. These antigens were synthetic peptides, derived from species‐specific epitopes in the variable domain IV of the major outer membrane protein (MOMP) (Labsystems, Finland) and recombinant polypeptide encoded by open reading frame 3 of the plasmid (pgp3). Conclusions. IgG and/or IgA anti‐MOMP‐derived peptides and anti‐pgp3 could be useful for the diagnosis of probable C. trachomatis reactive arthriti

    Processing Issues in Top-Down Approaches to Quantum Computer Development in Silicon

    Get PDF
    We describe critical processing issues in our development of single atom devices for solid-state quantum information processing. Integration of single 31P atoms with control gates and single electron transistor (SET) readout structures is addressed in a silicon-based approach. Results on electrical activation of low energy (15 keV) P implants in silicon show a strong dose effect on the electrical activation fractions. We identify dopant segregation to the SiO2/Si interface during rapid thermal annealing as a dopant loss channel and discuss measures of minimizing it. Silicon nanowire SET pairs with nanowire width of 10 to 20 nm are formed by electron beam lithography in SOI. We present first results from Coulomb blockade experiments and discuss issues of control gate integration for sub-40nm gate pitch levels

    Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond

    Full text link
    Exposure to beams of low energy electrons (2 to 30 keV) in a scanning electron microscope locally induces formation of NV-centers without thermal annealing in diamonds that have been implanted with nitrogen ions. We find that non-thermal, electron beam induced NV-formation is about four times less efficient than thermal annealing. But NV-center formation in a consecutive thermal annealing step (800C) following exposure to low energy electrons increases by a factor of up to 1.8 compared to thermal annealing alone. These observations point to reconstruction of nitrogen-vacancy complexes induced by electronic excitations from low energy electrons as an NV-center formation mechanism and identify local electronic excitations as a means for spatially controlled room-temperature NV-center formation
    corecore