90 research outputs found

    A Low-Cost, Reliable, High-Throughput System for Rodent Behavioral Phenotyping in a Home Cage Environment

    Get PDF
    Inexpensive, high-throughput, low maintenance systems for precise temporal and spatial measurement of mouse home cage behavior (including movement, feeding, and drinking) are required to evaluate products from large scale pharmaceutical design and genetic lesion programs. These measurements are also required to interpret results from more focused behavioral assays. We describe the design and validation of a highly-scalable, reliable mouse home cage behavioral monitoring system modeled on a previously described, one-ofa- kind system [1]. Mouse position was determined by solving static equilibrium equations describing the force and torques acting on the system strain gauges; feeding events were detected by a photobeam across the food hopper, and drinking events were detected by a capacitive lick sensor. Validation studies show excellent agreement between mouse position and drinking events measured by the system compared with video-based observation – a gold standard in neuroscience

    Age‐related changes in cerebellar and hypothalamic function accompany non‐microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    Get PDF
    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits

    Mapping Vesta: First Results from Dawn’s Survey Orbit

    Get PDF
    The geologic objectives of the Dawn Mission [1] are to derive Vesta’s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids’ origin and evolution.Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater sizefrequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase – the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of ~3000 km with a beta angle of 10°-15°

    A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies

    Get PDF
    Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites

    Hot, Rotating Disks In General Relativity: Collisionless Equilibrium Models

    No full text
    We present a method for constructing equilibrium disks with net angular momentum in general relativity. The method solves the relativistic Vlasov equation coupled to Einstein's equations for the gravitational field. We apply the method to construct disks that are relativistic versions of Newtonian Kalnajs disks. In Newtonian gravity these disks are analytic, and are stable against ring formation for certain ranges of their velocity dispersion. We investigate the existence of fully general relativistic equilibrium sequences for differing values of the velocity dispersion. These models are the first rotating, relativistic disk solutions of the collisionless Boltzman equation. 1. INTRODUCTION Rotating stellar disks in dynamical equilibrium have a long history in astrophysics. Such systems are described by self-consistent solutions to the Vlasov equation for the phase-space distribution function f coupled to the equations for the gravitational field. Even in Newtonian gravitation, finding..
    • 

    corecore