525 research outputs found

    The IgA nephropathy Biobank. An important starting point for the genetic dissection of a complex trait

    Get PDF
    BACKGROUND: IgA nephropathy (IgAN) or Berger's disease, is the most common glomerulonephritis in the world diagnosed in renal biopsied patients. The involvement of genetic factors in the pathogenesis of the IgAN is evidenced by ethnic and geographic variations in prevalence, familial clustering in isolated populations, familial aggregation and by the identification of a genetic linkage to locus IGAN1 mapped on 6q22–23. This study seems to imply a single major locus, but the hypothesis of multiple interacting loci or genetic heterogeneity cannot be ruled out. The organization of a multi-centre Biobank for the collection of biological samples and clinical data from IgAN patients and relatives is an important starting point for the identification of the disease susceptibility genes. DESCRIPTION: The IgAN Consortium organized a Biobank, recruiting IgAN patients and relatives following a common protocol. A website was constructed to allow scientific information to be shared between partners and to divulge obtained data (URL: ). The electronic database, the core of the website includes data concerning the subjects enrolled. A search page gives open access to the database and allows groups of patients to be selected according to their clinical characteristics. DNA samples of IgAN patients and relatives belonging to 72 multiplex extended pedigrees were collected. Moreover, 159 trios (sons/daughters affected and healthy parents), 1068 patients with biopsy-proven IgAN and 1040 healthy subjects were included in the IgAN Consortium Biobank. Some valuable and statistically productive genetic studies have been launched within the 5(th )Framework Programme 1998–2002 of the European project No. QLG1-2000-00464 and preliminary data have been published in "Technology Marketplace" website: . CONCLUSION: The first world IgAN Biobank with a readily accessible database has been constituted. The knowledge gained from the study of Mendelian diseases has shown that the genetic dissection of a complex trait is more powerful when combined linkage-based, association-based, and sequence-based approaches are performed. This Biobank continuously expanded contains a sample size of adequately matched IgAN patients and healthy subjects, extended multiplex pedigrees, parent-child trios, thus permitting the combined genetic approaches with collaborative studies

    Downregulation of nuclear-encoded genes of oxidative metabolism in dialyzed chronic kidney disease patients.

    Get PDF
    BACKGROUND:Mitochondria, essential eukaryotic cells organelles defined as the "powerhouse of the cell" because of their ability to produce the vast majority of energy necessary for cellular metabolism, may have a primary role in the oxidative stress-related intracellular machinery associated to chronic kidney disease (CKD).METHODS:To better assess this research assumption, we decided to study the key factors regulating mitochondrial oxidative metabolism in CKD patients in peritoneal dialysis (PD, n\u200a=\u200a15) using several bio-molecular methodologies.RESULTS:RT-PCR experiments demonstrate that the expression level of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1\u3b1) and nuclear respiratory factor-1 (NRF-1), two genes primarily involved in mitochondrial biogenesis and functions, were significantly hypo-expressed in peripheral blood mononuclear cells of PD patients compared to healthy subjects (HS, n\u200a=\u200a15). Additionally, mRNA levels of several PGC1-\u3b1 downstream target genes (TFAM, COX6C,COX7C, UQCRH and MCAD) were profoundly down-regulated in PD cells. TFAM protein analysis confirmed gene-expression results. High plasmatic concentration of Malondialdehyde found in PD patients, confirmed the contribution of the oxidative stress to these biological effects. Finally, Nuclear factor erythroid-derived 2-like 2 (NRF2 or NFE2L2), a transcription factor for numerous antioxidant/detoxifying enzymes and one of its target genes, superoxide dismutase-2 mitochondrial (SOD2) were up-regulated in PD compared to HS.CONCLUSIONS:Our results revealed, for the first time, that CKD-PD patients' PBMC, through a complex intracellular biochemical machinery, are able to modulate their mitochondrial functions probably in the attempt to reduce oxidative metabolic damage and to turn on a valuable defense cellular strategy against oxidative stress

    Ultrastructural pathology of nephropathies with organized deposits: a case series

    Get PDF
    Renal organized or structured deposits are much less frequent than those with usual type immunocomplex deposits and are encountered in a wide variety of primary and systemic disorders. It has been suggested that immunoglobulins (Igs) are responsible for organized deposits. We report 5 cases who have been diagnosed and treated in our hospital. Patients were aged 52 to 72 years, three of them were males and had variable degree of renal function, from normal serum creatinine to uraemia. Proteinuria was detected in all patients while monoclonal component was present only in the serum of one subject. Ultrastructural analysis of renal specimens revealed organized deposits. Diagnoses that were made are the following: membranoproliferative glomerulonephritis with finger print, immunotactoid glomerulopathy, membranoproliferative glomerulonephritis with arched deposits, primary amyloidosis and light chain deposition disease. In systemic disorders ultrastructural pathology could be particularly valuable for correct deposits classification, precise localization and pattern of deposition of Igs

    Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease

    Get PDF
    BACKGROUND:Chronic renal disease (CKD) is characterized by complex changes in cell metabolism leading to an increased production of oxygen radicals, that, in turn has been suggested to play a key role in numerous clinical complications of this pathological condition. Several reports have focused on the identification of biological elements involved in the development of systemic biochemical alterations in CKD, but this abundant literature results fragmented and not exhaustive.RESULTS:To better define the cellular machinery associated to this condition, we employed a high-throughput genomic approach based on a whole transcriptomic analysis associated with classical molecular methodologies. The genomic screening of peripheral blood mononuclear cells revealed that 44 genes were up-regulated in both CKD patients in conservative treatment (CKD, n = 9) and hemodialysis (HD, n = 17) compared to healthy subjects (HS, n = 8) (p < 0.001, FDR = 1%). Functional analysis demonstrated that 11/44 genes were involved in the oxidative phosphorylation system. Western blotting for COXI and COXIV, key constituents of the complex IV of oxidative phosphorylation system, performed on an independent testing-group (12 healthy subjects, 10 CKD and 14 HD) confirmed an higher synthesis of these subunits in CKD/HD patients compared to the control group. Only for COXI, the comparison between CKD and healthy subjects reached the statistical significance. However, complex IV activity was significantly reduced in CKD/HD patients compared to healthy subjects (p < 0.01). Finally, CKD/HD patients presented higher reactive oxygen species and 8-hydroxydeoxyguanosine levels compared to controls.CONCLUSION:Taken together these results suggest, for the first time, that CKD/HD patients may have an impaired mitochondrial respiratory system and this condition may be both the consequence and the cause of an enhanced oxidative stress

    Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci.

    Get PDF
    IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide, but its etiologic mechanisms are still poorly understood. Different prevalences among ethnic groups and familial aggregation, together with an increased familial risk, suggest important genetic influences on its pathogenesis. A locus for familial IgAN, called "IGAN1," on chromosome 6q22-23 has been described, without the identification of any responsible gene. The partners of the European IgAN Consortium organized a second genomewide scan in 22 new informative Italian multiplex families. A total of 186 subjects (59 affected and 127 unaffected) were genotyped and were included in a two-stage genomewide linkage analysis. The regions 4q26-31 and 17q12-22 exhibited the strongest evidence of linkage by nonparametric analysis (best P=.0025 and .0045, respectively). These localizations were also supported by multipoint parametric analysis, in which peak LOD scores of 1.83 ( alpha =0.50) and 2.56 ( alpha =0.65) were obtained using the affected-only dominant model, and by allowance for the presence of genetic heterogeneity. Our results provide further evidence for genetic heterogeneity among families with IgAN. Evidence of linkage to multiple chromosomal regions is consistent with both an oligo/polygenic and a multiple-susceptibility-gene model for familial IgAN, with small or moderate effects in determining the pathological phenotype. Although we identified new candidate regions, replication studies are required to confirm the genetic contribution to familial IgA

    Acute Treatment Effects on GFR in Randomized Clinical Trials of Kidney Disease Progression

    Full text link
    Background Acute changes in GFR can occur after initiation of interventions targeting progression of CKD. These acute changes complicate the interpretation of long-term treatment effects. Methods To assess the magnitude and consistency of acute effects in randomized clinical trials and explore factors that might affect them, we performed a meta-analysis of 53 randomized clinical trials for CKD progression, enrolling 56,413 participants with at least one estimated GFR measurement by 6 months after randomization. We defined acute treatment effects as the mean difference in GFR slope from baseline to 3 months between randomized groups. We performed univariable and multivariable metaregression to assess the effect of intervention type, disease state, baseline GFR, and albuminuria on the magnitude of acute effects. Results The mean acute effect across all studies was 20.21 ml/min per 1.73 m2 (95% confidence interval, 20.63 to 0.22) over 3 months, with substantial heterogeneity across interventions (95% coverage interval across studies, 22.50 to 12.08 ml/min per 1.73 m2). We observed negative average acute effects in renin angiotensin system blockade, BP lowering, and sodium-glucose cotransporter 2 inhibitor trials, and positive acute effects in trials of immunosuppressive agents. Larger negative acute effects were observed in trials with a higher mean baseline GFR. Conclusion The magnitude and consistency of acute GFR effects vary across different interventions, and are larger at higher baseline GFR. Understanding the nature and magnitude of acute effects can help inform the optimal design of randomized clinical trials evaluating disease progression in CKD
    • …
    corecore