47 research outputs found

    The distribution of oxygen at the Ni81Fe19/Ta interface

    Full text link
    The knowledge of how oxygen atoms are distributed at a magnetic-metal / oxide, or magnetic-metal / non-magnetic-metal interface, can be an useful tool to optimize device production. Multilayered Ni81Fe19 / Ta samples consisting of 15 bilayers of 2.5 nm each, grown onto glass substrates by magnetron sputtering from Ni81Fe19 and Ta targets, have been investigated. X-ray absorption near edge structure, extended X-Ray absorption fine structure, small angle X-ray diffraction, and simulations, were used to characterize the samples. Oxygen atoms incorporated onto Ni81Fe19 films during O2 exposition are mainly bonded to Fe atoms. This partial oxidation of the Ni81Fe19 surface works as a barrier to arriving Ta atoms, preventing intermixing at the Ni81Fe19 / Ta interface. The reduction of the Ni81Fe19 surface by the formation of TaO x is observed.Comment: 14 pages, 9 figures, accepted for publication in Advances in Materials Science and Engineerin

    Spin Polarization and Magneto-Coulomb Oscillations in Ferromagnetic Single Electron Devices

    Full text link
    The magneto-Coulomb oscillation, the single electron repopulation induced by external magnetic field, observed in a ferromagnetic single electron transistor is further examined in various ferromagnetic single electron devices. In case of double- and triple-junction devices made of Ni and Co electrodes, the single electron repopulation always occurs from Ni to Co electrodes with increasing a magnetic field, irrespective of the configurations of the electrodes. The period of the magneto-Coulomb oscillation is proportional to the single electron charging energy. All these features are consistently explained by the mechanism that the Zeeman effect induces changes of the Fermi energy of the ferromagnetic metal having a non-zero spin polarizations. Experimentally determined spin polarizations are negative for both Ni and Co and the magnitude is larger for Ni than Co as expected from band calculations.Comment: 4 pages, 3 figures, uses jpsj.sty, submitted to J. Phys. Soc. Jp

    Transición eléctrica en multicapas delgadas de VO2/SiO2 y VO2/TiO2, sintetizadas en substratos de Si(100)

    Get PDF
    Multicapas de VO2/SiO2 y VO2/TiO2 de tres periodos fueron sintetizadas sobre substratos monocristalinos de Si (100) con buffer de SiO2 y TiO2, respectivamente. La caracterización estructural por difracción de rayos X (XRD) de ambas multicapas, a temperatura ambiente, mostraron el pico de difracción correspondiente al plano cristalográfico (011) bien definido evidenciando la presencia de la fase VO2 (M1). Para [VO2/TiO2] x 3, el pico de difracción originado por los planos (011), mostró un ligero corrimiento hacia valores más bajos del ángulo, en relación al pico patrón. Las medidas del transporte electrónico en función de la temperatura, para las multicapas [VO2/SiO2] x 3, mostraron transición eléctrica a temperaturas de 55 °C y 58 °C y ancho de histéresis (H), de 9 °C y 6 °C, respectivamente. En el sistema [VO2/TiO2] x 3, la transición eléctrica ocurrió a 74 °C, con un ancho de histéresis sumamente estrecho (2 °C). Nuestros resultados sugieren que el comportamiento de la histéresis, así como el corrimiento mostrado por el pico experimental del plano (011), puede ser interpretado como consecuencia de la difusión de iones de Ti+4 hacia los sitios del V+4 en el VO2, debido a la alta temperatura del sustrato durante la deposición. Así, las impurezas de Ti+4 difundidas, actúan como núcleos de transformación de fase en el VO2, disminuyendo la energía de activación de la transformación de fase, explicando de esta manera la estreches de la histéresis observad

    Spin-accumulation in small ferromagnetic double barrier junctions

    Full text link
    The non-equilibrium spin accumulation in ferromagnetic double barrier junctions is shown to govern the transport in small structures. Transport properties of such systems are described by a generalization of the theory of the Coulomb blockade. The spin accumulation enhances the magnetoresistance. The transient non-linear transport properties are predicted to provide a unique experimental evidence of the spin-accumulation in the form of a reversed current on time scales of the order of the spin-flip relaxation time.Comment: 4 pages, 3 figures, to appear in PR

    Spin flip scattering in magnetic junctions

    Full text link
    Processes which flip the spin of an electron tunneling in a junction made up of magnetic electrodes are studied. It is found that: i) Magnetic impurities give a contribution which increases the resistance and lowers the magnetoresistance, which saturates at low temperatures. The conductance increases at high fields. ii) Magnon assisted tunneling reduces the magnetoresistance as T3/2T^{3/2}, and leads to a non ohmic contribution to the resistance which goes as V3/2V^{3/2}, iii) Surface antiferromagnetic magnons, which may appear if the interface has different magnetic properties from the bulk, gives rise to T2T^2 and V2V^2 contributions to the magnetoresistance and resistance, respectively, and, iv) Coulomb blockade effects may enhance the magnetoresistance, when transport is dominated by cotunneling processes.Comment: 5 page

    Tunneling Via Individual Electronic States in Ferromagnetic Nanoparticles

    Full text link
    We measure electron tunneling via discrete energy levels in ferromagnetic cobalt particles less than 4 nm in diameter, using non-magnetic electrodes. Due to magnetic anisotropy, the energy of each tunneling resonance shifts as an applied magnetic field rotates the particle's magnetic moment. We see both spin-increasing and decreasing tunneling transitions, but we do not observe the spin degeneracy at small magnetic fields seen previously in non-magnetic materials. The tunneling spectrum is denser than predicted for independent electrons, possibly due to spin-wave excitations.Comment: 4 pages, 4 figures. Improved by comments from referees, to appear in Phys. Rev. Let

    Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers

    Full text link
    Recently, it has been shown that magnetic tunnel junctions with thin MgO tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR) values at room temperature1, 2. However, the physics of spin dependent tunneling through MgO barriers is only beginning to be unravelled. Using planar magnetic tunnel junctions in which ultra-thin layers of magnetic metals are deposited in the middle of a MgO tunnel barrier here we demonstrate that the TMR is strongly modified when these layers are discontinuous and composed of small pancake shaped nanodots. At low temperatures, in the Coulomb blockade regime, for layers less than ~1 nm thick, the conductance of the junction is increased at low bias consistent with Kondo assisted tunneling. In the same regime we observe a suppression of the TMR. For slightly thicker layers, and correspondingly larger nanodots, the TMR is enhanced at low bias, consistent with co-tunneling.Comment: Nano Letters (in press

    Large Magnetoresistance Ratio in Ferromagnetic Single-Electron Transistors in the Strong Tunneling Regime

    Full text link
    We study transport through a ferromagnetic single-electron transistor. The resistance is represented as a path integral, so that systems where the tunnel resistances are smaller than the quantum resistance can be investigated. Beyond the low order sequential tunneling and co-tunneling regimes, a large magnetoresistance ratio at sufficiently low temperatures is found. In the opposite limit, when the thermal energy is larger than the charging energy, the magnetoresistance ratio is only slightly enhanced.Comment: updated versio

    Nonequilibrium spin distribution in single-electron transistor

    Full text link
    Single-electron transistor with ferromagnetic outer electrodes and nonmagnetic island is studied theoretically. Nonequilibrium electron spin distribution in the island is caused by tunneling current. The dependencies of the magnetoresistance ratio δ\delta on the bias and gate voltages show the dips which are directly related to the induced separation of Fermi levels for electrons with different spins. Inside a dip δ\delta can become negative.Comment: 11 pages, 2 eps figure

    Mesoscopic Tunneling Magnetoresistance

    Full text link
    We study spin-dependent transport through ferromagnet/normal-metal/ferromagnet double tunnel junctions in the mesoscopic Coulomb blockade regime. A general transport equation allows us to calculate the conductance in the absence or presence of spin-orbit interaction and for arbitrary orientation of the lead magnetizations. The tunneling magnetoresistance (TMR), defined at the Coulomb blockade conductance peaks, is calculated and its probability distribution presented. We show that mesoscopic fluctuations can lead to the optimal value of the TMR.Comment: 5 pages, 3 eps figures included using epsf.sty. Revised text and improved notation, fig. 2 removed, explicit equations for the GSE case adde
    corecore