699 research outputs found

    Epiretinal Cell Proliferation in Macular Pucker and Vitreomacular Traction Syndrome: Analysis of Flat-Mounted Internal Limiting Membrane Specimens

    Get PDF
    Purpose: To describe new details of epiretinal cell proliferation in flat-mounted internal limiting membrane specimens. Methods: One hundred nineteen internal limiting membrane specimens were removed en bloc with epiretinal membranes from 79 eyes with macular pucker (MP) and 40 eyes with vitreomacular traction syndrome. Intraoperatively, posterior vitreous detachment was assessed as complete or incomplete. Whole specimens were flat-mounted on glass slides and processed for interference and phase-contrast microscopy, cell viability assay, and immunocytochemistry. Results: Mean cell viability percentage was higher in MP than in vitreomacular traction syndrome. Two cell distribution patterns were found. Anti-CD163 labeling presented predominantly in MP with complete posterior vitreous detachment. CD45 expression was similar in all groups of diagnosis. Anti-glial fibrillary acidic protein (GFAP) labeling was found in MP irrespective of the extent of posterior vitreous detachment. Alpha-SMA (alpha-smooth muscle actin) labeling was mainly presented in MP with incomplete posterior vitreous detachment and in vitreomacular traction syndrome. Simultaneous antibody labeling included GFAP/CD45, GFAP/CD163, CD163/CD45, and CD163/alpha-SMA. Conclusion: Hyalocytes constitute a major cell type of epiretinal cell proliferation in eyes with MP and vitreomacular traction syndrome. Glial cells, notably retinal Muller cells, are involved as well. It appears that transdifferentiation of cells in vitreomacular traction might be more frequent than previously thought and that those cells possess a greater variability of immunocytochemical properties than expected. RETINA 33:77-88, 201

    An anodeā€free Znā€“graphite battery

    Get PDF
    The anode-free battery concept is proposed to pursue the aspiration of energy-dense, rechargeable metal batteries, but this has not been achieved with dual-ion batteries. Herein, the first anode-free Znā€“graphite battery enabled by efficient Zn platingā€“stripping onto a silver-coated Cu substrate is demonstrated. The silver coating guides uniform Zn deposition without dendrite formation or side reaction over a wide range of electrolyte concentrations, enabling the construction of anode-free Zn cells. In addition, the graphite cathode operates efficiently under reversible bis(trifluoromethanesulfonyl)imide anion (TFSIāˆ’) intercalation without anodic corrosion. An extra high-potential TFSIāˆ’ intercalation plateau is recognized at 2.75 V, contributing to the high capacity of graphite cathode. Thanks to efficient Zn platingā€“stripping and TFSIāˆ’ intercalationā€“deintercalation, an anode-free Znā€“graphite dual-ion battery that exhibits impressive cycling stability with 82% capacity retention after 1000 cycles is constructed. At the same time, a specific energy of 79 Wh kgāˆ’1 based on the mass of cathode and electrolyte is achieved, which is over two times higher than conventional Znā€“graphite batteries (āˆ’1)

    Bodily feeling in depersonalisation: a phenomenological account

    Get PDF
    publication-status: Publishedtypes: ArticlePre-print - please cite published version at Sage web site: http://emr.sagepub.com/content/4/2/145.full.pdf+htmlThis paper addresses the phenomenology of bodily feeling in depersonalisation disorder. We argue that not all bodily feelings are intentional states that have the body or part of it as their object. We distinguish three broad categories of bodily feeling: noematic feeling, noetic feeling and existential feeling. Then we show how an appreciation of the differences between them can contribute to an understanding of the depersonalisation experience.ER

    Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity

    Get PDF
    We present a novel formulation for biochemical reaction networks in the context of signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of 'source' species, which receive input signals. Signals are transmitted to all other species in the system (the 'target' species) with a specific delay and transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and recalled to build discrete dynamical models. By separating reaction time and concentration we can greatly simplify the model, circumventing typical problems of complex dynamical systems. The transfer function transformation can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant insight, while remaining an executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modules that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. We also found that overall interconnectedness depends on the magnitude of input, with high connectivity at low input and less connectivity at moderate to high input. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.Comment: 13 pages, 5 tables, 15 figure

    Learning intrinsic excitability in medium spiny neurons

    Full text link
    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parametrization of individual ion channels on the neuronal activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal variability on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how variability and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic variability determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.Comment: 20 pages, 8 figure

    Empathy, engagement, entrainment: the interaction dynamics of aesthetic experience

    Get PDF
    A recent version of the view that aesthetic experience is based in empathy as inner imitation explains aesthetic experience as the automatic simulation of actions, emotions, and bodily sensations depicted in an artwork by motor neurons in the brain. Criticizing the simulation theory for committing to an erroneous concept of empathy and failing to distinguish regular from aesthetic experiences of art, I advance an alternative, dynamic approach and claim that aesthetic experience is enacted and skillful, based in the recognition of othersā€™ experiences as distinct from oneā€™s own. In combining insights from mainly psychology, phenomenology, and cognitive science, the dynamic approach aims to explain the emergence of aesthetic experience in terms of the reciprocal interaction between viewer and artwork. I argue that aesthetic experience emerges by participatory sense-making and revolves around movement as a means for creating meaning. While entrainment merely plays a preparatory part in this, aesthetic engagement constitutes the phenomenological side of coupling to an artwork and provides the context for exploration, and eventually for moving, seeing, and feeling with art. I submit that aesthetic experience emerges from bodily and emotional engagement with works of art via the complementary processes of the perceptionā€“action and motionā€“emotion loops. The former involves the embodied visual exploration of an artwork in physical space, and progressively structures and organizes visual experience by way of perceptual feedback from body movements made in response to the artwork. The latter concerns the movement qualities and shapes of implicit and explicit bodily responses to an artwork that cue emotion and thereby modulate over-all affect and attitude. The two processes cause the viewer to bodily and emotionally move with and be moved by individual works of art, and consequently to recognize another psychological orientation than her own, which explains how art can cause feelings of insight or awe and disclose aspects of life that are unfamiliar or novel to the viewer

    Self-Diffusion and Nuclear Magnetic Relaxation of Dendritic Macromolecules in Solutions

    Get PDF
    The self-diffusion and nuclear magnetic relaxation of poly(butylcarbosilane) and poly(allylcarbosilane) dendrimers dissolved in deuterated chloroform and poly(amidoamine) dendrimers with hydroxyl surface groups in solutions with methanol have been studied. The diffusion rates (D) have been measured by the pulsed-field-gradient nuclear magnetic resonance. It is shown that experimental concentration dependences D(Ļ†) obtained for macromolecules in the dendrimer-solvent systems studied can be reduced to a unified view, and thus, the generalized concentration dependence of the normalized diffusion rates of dendrimers can be obtained. In the macromolecular volume concentration range from 0.01 up to 0.55, the generalized dependence of the normalized diffusion rates for dendrimers coincides with the analogous dependence for globular proteins in aqueous solutions; the last result suggests that self-diffusion features of dendrimers and globular proteins are in general similar. It is also shown that the experimental data obtained permit one to characterize the changes of the own monomer density of dendrimers depending on their molecular weight and, as a consequence, to make a conclusion about the swelling of dendritic macromolecules in the solutions studied
    • ā€¦
    corecore