28 research outputs found

    Artificial intelligence large language model ChatGPT: is it a trustworthy and reliable source of information for sarcoma patients?

    Get PDF
    IntroductionSince its introduction in November 2022, the artificial intelligence large language model ChatGPT has taken the world by storm. Among other applications it can be used by patients as a source of information on diseases and their treatments. However, little is known about the quality of the sarcoma-related information ChatGPT provides. We therefore aimed at analyzing how sarcoma experts evaluate the quality of ChatGPT’s responses on sarcoma-related inquiries and assess the bot’s answers in specific evaluation metrics.MethodsThe ChatGPT responses to a sample of 25 sarcoma-related questions (5 definitions, 9 general questions, and 11 treatment-related inquiries) were evaluated by 3 independent sarcoma experts. Each response was compared with authoritative resources and international guidelines and graded on 5 different metrics using a 5-point Likert scale: completeness, misleadingness, accuracy, being up-to-date, and appropriateness. This resulted in maximum 25 and minimum 5 points per answer, with higher scores indicating a higher response quality. Scores ≥21 points were rated as very good, between 16 and 20 as good, while scores ≤15 points were classified as poor (11–15) and very poor (≤10).ResultsThe median score that ChatGPT’s answers achieved was 18.3 points (IQR, i.e., Inter-Quartile Range, 12.3–20.3 points). Six answers were classified as very good, 9 as good, while 5 answers each were rated as poor and very poor. The best scores were documented in the evaluation of how appropriate the response was for patients (median, 3.7 points; IQR, 2.5–4.2 points), which were significantly higher compared to the accuracy scores (median, 3.3 points; IQR, 2.0–4.2 points; p = 0.035). ChatGPT fared considerably worse with treatment-related questions, with only 45% of its responses classified as good or very good, compared to general questions (78% of responses good/very good) and definitions (60% of responses good/very good).DiscussionThe answers ChatGPT provided on a rare disease, such as sarcoma, were found to be of very inconsistent quality, with some answers being classified as very good and others as very poor. Sarcoma physicians should be aware of the risks of misinformation that ChatGPT poses and advise their patients accordingly

    Molecular profiling of soft-tissue sarcomas with FoundationOne® Heme identifies potential targets for sarcoma therapy: a single-centre experience

    Get PDF
    Background: Molecular diagnosis has become an established tool in the characterisation of adult soft-tissue sarcomas (STS). FoundationOne ® Heme analyses somatic gene alterations in sarcomas via DNA and RNA-hotspot sequencing of tumour-associated genes. Methods: We evaluated FoundationOne ® Heme testing in 81 localised STS including 35 translocation-associated and 46 complex-karyotyped cases from a single institution. Results: Although FoundationOne ® Heme achieved broad patient coverage and identified at least five genetic alterations in each sample, the sensitivity for fusion detection was rather low, at 42.4%. Nevertheless, potential targets for STS treatment were detected using the FoundationOne ® Heme assay: complex-karyotyped sarcomas frequently displayed copy-number alterations of common tumour-suppressor genes, particularly deletions in TP53 , NF1 , ATRX , and CDKN2A . A subset of myxofibrosarcomas (MFS) was amplified for HGF ( n  = 3) and MET ( n  = 1). PIK3CA was mutated in 7/15 cases of myxoid liposarcoma (MLS; 46.7%). Epigenetic regulators (e.g. MLL2 and MLL3 ) were frequently mutated. Conclusions: In summary, FoundationOne ® Heme detected a broad range of genetic alterations and potential therapeutic targets in STS (e.g. HGF/MET in a subset of MFS, or PIK3CA in MLS). The assay’s sensitivity for fusion detection was low in our sample and needs to be re-evaluated in a larger cohort

    Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone

    Get PDF
    It is recognized that some mutated cancer genes contribute to the development of many cancer types, whereas others are cancer type specific. For genes that are mutated in multiple cancer classes, mutations are usually similar in the different affected cancer types. Here, however, we report exquisite tumor type specificity for different histone H3.3 driver alterations. In 73 of 77 cases of chondroblastoma (95%), we found p.Lys36Met alterations predominantly encoded in H3F3B, which is one of two genes for histone H3.3. In contrast, in 92% (49/53) of giant cell tumors of bone, we found histone H3.3 alterations exclusively in H3F3A, leading to p.Gly34Trp or, in one case, p.Gly34Leu alterations. The mutations were restricted to the stromal cell population and were not detected in osteoclasts or their precursors. In the context of previously reported H3F3A mutations encoding p.Lys27Met and p.Gly34Arg or p.Gly34Val alterations in childhood brain tumors, a remarkable picture of tumor type specificity for histone H3.3 driver alterations emerges, indicating that histone H3.3 residues, mutations and genes have distinct functions

    EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen: Focused Compound Screen in Chordoma

    Get PDF
    Chordoma is a rare malignant bone tumour with a poor prognosis and limited therapeutic options. We undertook a focused compound screen (FCS) against 1097 compounds on three well-characterized chordoma cell lines; 154 compounds were selected from the single concentration screen (1 µm), based on their growth-inhibitory effect. Their half-maximal effective concentration (EC50 ) values were determined in chordoma cells and normal fibroblasts. Twenty-seven of these compounds displayed chordoma selective cell kill and 21/27 (78%) were found to be EGFR/ERBB family inhibitors. EGFR inhibitors in clinical development were then studied on an extended cell line panel of seven chordoma cell lines, four of which were sensitive to EGFR inhibition. Sapitinib (AstraZeneca) emerged as the lead compound, followed by gefitinib (AstraZeneca) and erlotinib (Roche/Genentech). The compounds were shown to induce apoptosis in the sensitive cell lines and suppressed phospho-EGFR and its downstream pathways in a dose-dependent manner. Analysis of substituent patterns suggested that EGFR-inhibitors with small aniline substituents in the 4-position of the quinazoline ring were more effective than inhibitors with large substituents in that position. Sapitinib showed significantly reduced tumour growth in two xenograft mouse models (U-CH1 xenograft and a patient-derived xenograft, SF8894). One of the resistant cell lines (U-CH2) was shown to express high levels of phospho-MET, a known bypass signalling pathway to EGFR. Neither amplifications (EGFR, ERBB2, MET) nor mutations in EGFR, ERBB2, ERBB4, PIK3CA, BRAF, NRAS, KRAS, PTEN, MET or other cancer gene hotspots were detected in the cell lines. Our findings are consistent with the reported (p-)EGFR expression in the majority of clinical samples, and provide evidence for exploring the efficacy of EGFR inhibitors in the treatment of patients with chordoma and studying possible resistance mechanisms to these compounds in vitro and in vivo. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland

    Progress towards a public chemogenomic set for protein kinases and a call for contributions

    Get PDF
    Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases

    Higher cMET dependence of sacral compared to clival chordoma cells: contributing to a better understanding of cMET in chordoma

    Get PDF
    Abstract Chordomas are rare slow growing, malignant bone tumors of the axial skeleton with no approved medical treatment. As the majority of chordomas express cMET and its ligand, HGF, and crosstalks between EGFR and MET-signaling exist, we aimed to explore cMET activity in chordoma cell lines and clinical samples. We investigated nine chordoma patients and four chordoma cell lines for cMET expression. Two clival and two sacral chordoma cell lines were tested for chromosomal abnormalities of the MET gene locus; we studied the influence of HGF on the autocrine secretion and migration behavior, as well as protein expression and phosphorylation. Two MET/ALK inhibitors were investigated for their effects on cell viability, cell cycle, cyclin alterations, apoptosis, and downstream signaling pathways. Moderate and strong expression of membrane and cytoplasmic cMET in chordoma patients and cell lines used, as well as concentration-dependent increase in phospho cMET expression after HGF stimulation in all four chordoma cell lines was shown. U-CH2, MUG-Chor1, and UM-Chor1 are polysomic for MET. Chordoma cell lines secreted EGF, VEGF, IL-6, and MMP9 upon HGF-stimulation. Sacral cell lines showed a distinct HGF-induced migration. Both inhibitors dose-dependently inhibited cell growth, induce apoptosis and cell-cycle arrest, and suppress downstream pathways. Heterogeneous responses obtained in our in vitro setting indicate that cMET inhibitors alone or in combination with other drugs might particularly benefit patients with sacral chordomas

    Clusterin expression in elastofibroma dorsi

    No full text
    Background: Elastofibroma dorsi is a benign soft tissue lesion composed of abnormal elastic fibers. Degenerated elastic fibers in skin and liver are associated with clusterin, an apoprotein that shares functional properties with small heat shock proteins. We evaluated the staining pattern and possible role of clusterin in elastofibroma dorsi. Material and methods: Twenty-one subcutaneous elastofibromas from the scapular region were evaluated with Elastica van Gieson and Orcein stains, immunohistochemically with antibodies to clusterin, smooth muscle actin, S-100, vimentin and CD34 and correlated with clinical data with respect to physical trauma. Results: Clusterin correlated with the staining pattern of Elastica van Gieson and labelled abnormal broad coarse fibrillar and globular elastic fibers in all elastofibromas. Orcein stains additionally identified fine oxytalan fibers which were not stained by clusterin. Clusterin staining was observed only on the outside of the elastin fibers, while the cores of fibers and globules were unstained. 4/21 elastofibromas showed cellular nodules with a myxoid/ collagenous stroma. The round to oval cells showed cytoplasmic staining with vimentin and clusterin; CD34 labelled mostly cell membranes. The cells lacked SMA and S-100 expression. The central areas of the nodules were devoid of elastic fibers, but the periphery contained coarse fibers and globules. 9/11 patients, for whom clinical data were available, reported trauma to the scapular region. Conclusion: Many investigated ED were associated with trauma, which supports a reactive/ degenerative etiology of ED. The abnormal large elastic fibers in all ED were enveloped by clusterin. Clusterin deposition may protect elastic fibers from degradation and thus contribute indirectly to the tumor-like presentation of ED
    corecore