445 research outputs found

    Maternal race-ethnicity, immigrant status, country of birth, and the odds of a child with autism spectrum disorder

    Get PDF
    The risk of autism spectrum disorder varies by maternal race–ethnicity, immigration status, and birth region. In this retrospective cohort study, Western Australian state registries and a study population of 134 204 mothers enabled us to examine the odds of autism spectrum disorder with intellectual disability in children born from 1994 to 2005 by the aforementioned characteristics. We adjusted for maternal age, parity, socioeconomic status, and birth year. Indigenous women were 50% less likely to have a child with autism spectrum disorder with intellectual disability than Caucasian, nonimmigrant women. Overall, immigrant women were 40% less likely to have a child with autism spectrum disorder with intellectual disability than nonimmigrant women. However, Black women from East Africa had more than 3.5 times the odds of autism spectrum disorder with intellectual disability in their children than Caucasian nonimmigrant women. Research is implicated on risk and protective factors for autism spectrum disorder with intellectual disability in the children of immigrant women

    Microbial transformations of selenite by methane-oxidizing bacteria

    Get PDF
    Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology

    Systematic XAS study on the reduction and uptake of Tc by magnetite and mackinawite

    Get PDF
    The mechanisms for the reduction and uptake of Tc by magnetite (Fe3O4) and mackinawite (FeS) are investigated using X-ray absorption spectroscopy (XANES and EXAFS), in combination with thermodynamic calculations of the Tc/Fe systems and accurate characterization of the solution properties (pHm, pe, [Tc]). Batch sorption experiments were performed under strictly anoxic conditions using freshly prepared magnetite and mackinawite in 0.1 M NaCl solutions with varying initial Tc(VII) concentrations (2 × 10−5 and 2 × 10−4 M) and Tc loadings (400–900 ppm). XANES confirms the complete reduction of Tc(VII) to Tc(IV) in all investigated systems, as predicted from experimental (pHm + pe) measurements and thermodynamic calculations. Two Tc endmember species are identified by EXAFS in the magnetite system, Tc substituting for Fe in the magnetite structure and Tc–Tc dimers sorbed to the magnetite {111} faces through a triple bond. The sorption endmember is favoured at higher [Tc], whereas incorporation prevails at low [Tc] and less alkaline pH conditions. The key role of pH in the uptake mechanism is interpreted in terms of magnetite solubility, with higher [Fe] and greater recrystallization rates occurring at lower pH values. A TcSx-like phase is predominant in all investigated mackinawite systems, although the contribution of up to 20% of TcO2·xH2O(s) (likely as surface precipitate) is observed for the highest investigated loadings (900 ppm). These results provide key inputs for an accurate mechanistic interpretation of the Tc uptake by magnetite and mackinawite, so far controversially discussed in the literature, and represent a highly relevant contribution to the investigation of Tc retention processes in the context of nuclear waste disposal

    An Opportunity to Increase Collaborative Science in Fetal, Infant, and Toddler Neuroimaging

    Get PDF
    The field of fetal, infant, and toddler (FIT) neuroimaging research—including magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography, and functional near-infrared spectroscopy, among others—offers pioneering insights into early brain development and has grown in popularity over the past 2 decades. In broader neuroimaging research, multisite collaborative projects, data sharing, and open-source code have increasingly become the norm, fostering big data, consensus standards, and rapid knowledge transfer and development. Given the aforementioned benefits, along with recent initiatives from funding agencies to support multisite and multimodal FIT neuroimaging studies, the FIT field now has the opportunity to establish sustainable, collaborative, and open science practices. By combining data and resources, we can tackle the most pressing issues of the FIT field, including small effect sizes, replicability problems, generalizability issues, and the lack of field standards for data collection, processing, and analysis—together. Thus, the goals of this commentary are to highlight some of the potential barriers that have waylaid these efforts and to discuss the emerging solutions that have the potential to revolutionize how we work together to study the developing brain early in life

    Initial validation of a novel method of presurgical language localization through functional connectivity (fcMRI)

    Get PDF
    OBJECTIVE: Neurosurgery is potentially curative in chronic epilepsy but can only be offered to patients if the surgical risk to language is known. Clinical functional magnetic resonance imaging (fMRI) is an ideal, noninvasive method for localizing language cortex yet remains to be validated for this purpose. We have recently presented a novel method for localizing language cortex. Here we present a preliminary evaluation of this method’s validity. We hypothesized language regions identified using this novel method would demonstrate stronger functional connectivity than randomly generated set of proximal networks. METHOD: fMRI data were collected from sixteen temporal lobe patients (12 left) being evaluated for epilepsy surgery at UCLA (mean age 38.9 [sd 11.4]; 6 female; per Wada 14 left language dominant, 1 right, 1 mixed). Language maps were generated using a recently standardized method relying on a conjunction of language tasks (e.g., visual object naming; auditory naming; reading) to identify known language regions (Broca’s area; inferior and superior Wernicke’s Areas; Angular gyrus; Basal Temporal Language Area; Exner’s Area; and Supplementary Speech Area). With activations defined as network nodes, mean network connectivity was compared via permutation tests with alternate (i) fully random and (ii) proximal random networks. Mean network connectivity was determined in independently-acquired motor fMRI datasets (9 foot, 16 hand, 14 tongue). FINDINGS: 77% (30/39) of clinician-derived language networks exhibited mean connectivity greater than fully random networks (p\u3c0.05). Similarly, 69% (27/39) of clinician-derived language networks exhibited mean connectivity greater than proximal random networks (p\u3c0.05). Further analysis of networks not passing the permutation test suggests that low connectivity of non-valid networks may be driven not by low connectivity across all nodes, but by individual nodes that may not actually possess membership within the network. CONCLUSIONS: This study provides preliminary validity for a novel, clinician-based approach to mapping language cortex pre-surgery. This complements our recent work showing this method is reliable, and supports a proposed study comparing fMRI language maps using this technique with the results of direct stimulation mapping
    corecore