97 research outputs found
Development of a System for 3D High-resolution Seismic Reflection Profiling on Lakes
A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error<0.20m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5m from each other. With a receiver spacing of 2.5m, the bin dimension is 1.25m in inline and 3.75m in crossline direction. To test the system, we conducted a 3D survey of about 1km2 in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15in3 air gun (40-650Hz) operated at 80 bars and 1m depth gave a signal penetration of 300m below water bottom and a best vertical resolution of 1.1m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30
Development of a 3D very high-resolution seismic reflection system for lacustrine settings - a case study over a thrust fault zone in Lake Geneva
Un systĂšme efficace de sismique tridimensionnelle (3-D) haute-rĂ©solution adaptĂ© Ă des cibles lacustres de petite Ă©chelle a Ă©tĂ© dĂ©veloppĂ©. Dans le Lac LĂ©man, prĂšs de la ville de Lausanne, en Suisse, des investigations rĂ©centes en deux dimension (2-D) ont mis en Ă©vidence une zone de faille complexe qui a Ă©tĂ© choisie pour tester notre systĂšme. Les structures observĂ©es incluent une couche mince (<40 m) de sĂ©diments quaternaires sub-horizontaux, discordants sur des couches tertiaires de molasse pentĂ©es vers le sud-est. On observe aussi la zone de faille de « La PaudĂšze » qui sĂ©pare les unitĂ©s de la Molasse du Plateau de la Molasse Subalpine. Deux campagnes 3-D complĂštes, d?environ d?un kilomĂštre carrĂ©, ont Ă©tĂ© rĂ©alisĂ©es sur ce site de test. La campagne pilote (campagne I), effectuĂ©e en 1999 pendant 8 jours, a couvert 80 profils en utilisant une seule flĂ»te. Pendant la campagne II (9 jours en 2001), le nouveau systĂšme trois-flĂ»tes, bien paramĂ©trĂ©s pour notre objectif, a permis l?acquisition de donnĂ©es de trĂšs haute qualitĂ© sur 180 lignes CMP. Les amĂ©liorations principales incluent un systĂšme de navigation et de dĂ©clenchement de tirs grĂące Ă un nouveau logiciel. Celui-ci comprend un contrĂŽle qualitĂ© de la navigation du bateau en temps rĂ©el utilisant un GPS diffĂ©rentiel (dGPS) Ă bord et une station de rĂ©fĂ©rence prĂšs du bord du lac. De cette façon, les tirs peuvent ĂȘtre dĂ©clenchĂ©s tous les 5 mĂštres avec une erreur maximale non-cumulative de 25 centimĂštres. Tandis que pour la campagne I la position des rĂ©cepteurs de la flĂ»te 48-traces a dĂ» ĂȘtre dĂ©duite Ă partir des positions du bateau, pour la campagne II elle ont pu ĂȘtre calculĂ©es prĂ©cisĂ©ment (erreur <20 cm) grĂące aux trois antennes dGPS supplĂ©mentaires placĂ©es sur des flotteurs attachĂ©s Ă l?extrĂ©mitĂ© de chaque flĂ»te 24-traces. Il est maintenant possible de dĂ©terminer la dĂ©rive Ă©ventuelle de l?extrĂ©mitĂ© des flĂ»tes (75 m) causĂ©e par des courants latĂ©raux ou de petites variations de trajet du bateau. De plus, la construction de deux bras tĂ©lescopiques maintenant les trois flĂ»tes Ă une distance de 7.5 m les uns des autres, qui est la mĂȘme distance que celle entre les lignes naviguĂ©es de la campagne II. En combinaison avec un espacement de rĂ©cepteurs de 2.5 m, la dimension de chaque «bin» de donnĂ©es 3-D de la campagne II est de 1.25 m en ligne et 3.75 m latĂ©ralement. L?espacement plus grand en direction « in-line » par rapport Ă la direction «cross-line» est justifiĂ© par l?orientation structurale de la zone de faille perpendiculaire Ă la direction «in-line». L?incertitude sur la navigation et le positionnement pendant la campagne I et le «binning» imprĂ©cis qui en rĂ©sulte, se retrouve dans les donnĂ©es sous forme d?une certaine discontinuitĂ© des rĂ©flecteurs. L?utilisation d?un canon Ă air Ă doublechambre (qui permet d?attĂ©nuer l?effet bulle) a pu rĂ©duire l?aliasing observĂ© dans les sections migrĂ©es en 3-D. Celui-ci Ă©tait dĂ» Ă la combinaison du contenu relativement haute frĂ©quence (<2000 Hz) du canon Ă eau (utilisĂ© Ă 140 bars et Ă 0.3 m de profondeur) et d?un pas d?Ă©chantillonnage latĂ©ral insuffisant. Le Mini G.I 15/15 a Ă©tĂ© utilisĂ© Ă 80 bars et Ă 1 m de profondeur, est mieux adaptĂ© Ă la complexitĂ© de la cible, une zone faillĂ©e ayant des rĂ©flecteurs pentĂ©s jusqu?Ă 30°. Bien que ses frĂ©quences ne dĂ©passent pas les 650 Hz, cette source combine une pĂ©nĂ©tration du signal non-aliasĂ© jusqu?Ă 300 m dans le sol (par rapport au 145 m pour le canon Ă eau) pour une rĂ©solution verticale maximale de 1.1 m. Tandis que la campagne I a Ă©tĂ© acquise par groupes de plusieurs lignes de directions alternĂ©es, l?optimisation du temps d?acquisition du nouveau systĂšme Ă trois flĂ»tes permet l?acquisition en gĂ©omĂ©trie parallĂšle, ce qui est prĂ©fĂ©rable lorsqu?on utilise une configuration asymĂ©trique (une source et un dispositif de rĂ©cepteurs). Si on ne procĂšde pas ainsi, les stacks sont diffĂ©rents selon la direction. Toutefois, la configuration de flĂ»tes, plus courtes que pour la compagne I, a rĂ©duit la couverture nominale, la ramenant de 12 Ă 6. Une sĂ©quence classique de traitement 3-D a Ă©tĂ© adaptĂ©e Ă l?Ă©chantillonnage Ă haute frĂ©quence et elle a Ă©tĂ© complĂ©tĂ©e par deux programmes qui transforment le format non-conventionnel de nos donnĂ©es de navigation en un format standard de l?industrie. Dans l?ordre, le traitement comprend l?incorporation de la gĂ©omĂ©trie, suivi de l?Ă©dition des traces, de l?harmonisation des «bins» (pour compenser l?inhomogĂ©nĂ©itĂ© de la couverture due Ă la dĂ©rive du bateau et de la flĂ»te), de la correction de la divergence sphĂ©rique, du filtrage passe-bande, de l?analyse de vitesse, de la correction DMO en 3-D, du stack et enfin de la migration 3-D en temps. D?analyses de vitesse dĂ©taillĂ©es ont Ă©tĂ© effectuĂ©es sur les donnĂ©es de couverture 12, une ligne sur deux et tous les 50 CMP, soit un nombre total de 600 spectres de semblance. Selon cette analyse, les vitesses d?intervalles varient de 1450-1650 m/s dans les sĂ©diments non-consolidĂ©s et de 1650-3000 m/s dans les sĂ©diments consolidĂ©s. Le fait que l?on puisse interprĂ©ter plusieurs horizons et surfaces de faille dans le cube, montre le potentiel de cette technique pour une interprĂ©tation tectonique et gĂ©ologique Ă petite Ă©chelle en trois dimensions. On distingue cinq faciĂšs sismiques principaux et leurs gĂ©omĂ©tries 3-D dĂ©taillĂ©es sur des sections verticales et horizontales: les sĂ©diments lacustres (HolocĂšne), les sĂ©diments glacio-lacustres (PlĂ©istocĂšne), la Molasse du Plateau, la Molasse Subalpine de la zone de faille (chevauchement) et la Molasse Subalpine au sud de cette zone. Les couches de la Molasse du Plateau et de la Molasse Subalpine ont respectivement un pendage de ~8° et ~20°. La zone de faille comprend de nombreuses structures trĂšs dĂ©formĂ©es de pendage d?environ 30°. Des tests prĂ©liminaires avec un algorithme de migration 3-D en profondeur avant sommation et Ă amplitudes prĂ©servĂ©es dĂ©montrent que la qualitĂ© excellente des donnĂ©es de la campagne II permet l?application de telles techniques Ă des campagnes haute-rĂ©solution. La mĂ©thode de sismique marine 3-D Ă©tait utilisĂ©e jusqu?Ă prĂ©sent quasi-exclusivement par l?industrie pĂ©troliĂšre. Son adaptation Ă une Ă©chelle plus petite gĂ©ographiquement mais aussi financiĂšrement a ouvert la voie d?appliquer cette technique Ă des objectifs d?environnement et du gĂ©nie civil.<br/><br/>An efficient high-resolution three-dimensional (3-D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, past high-resolution two-dimensional (2-D) investigations revealed a complex fault zone (the PaudĂšze thrust zone), which was subsequently chosen for testing our system. Observed structures include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie southeast-dipping Tertiary Molasse beds and the PaudĂšze thrust zone, which separates Plateau and Subalpine Molasse units. Two complete 3-D surveys have been conducted over this same test site, covering an area of about 1 km2. In 1999, a pilot survey (Survey I), comprising 80 profiles, was carried out in 8 days with a single-streamer configuration. In 2001, a second survey (Survey II) used a newly developed three-streamer system with optimized design parameters, which provided an exceptionally high-quality data set of 180 common midpoint (CMP) lines in 9 days. The main improvements include a navigation and shot-triggering system with in-house navigation software that automatically fires the gun in combination with real-time control on navigation quality using differential GPS (dGPS) onboard and a reference base near the lake shore. Shots were triggered at 5-m intervals with a maximum non-cumulative error of 25 cm. Whereas the single 48-channel streamer system of Survey I requires extrapolation of receiver positions from the boat position, for Survey II they could be accurately calculated (error <20 cm) with the aid of three additional dGPS antennas mounted on rafts attached to the end of each of the 24- channel streamers. Towed at a distance of 75 m behind the vessel, they allow the determination of feathering due to cross-line currents or small course variations. Furthermore, two retractable booms hold the three streamers at a distance of 7.5 m from each other, which is the same distance as the sail line interval for Survey I. With a receiver spacing of 2.5 m, the bin dimension of the 3-D data of Survey II is 1.25 m in in-line direction and 3.75 m in cross-line direction. The greater cross-line versus in-line spacing is justified by the known structural trend of the fault zone perpendicular to the in-line direction. The data from Survey I showed some reflection discontinuity as a result of insufficiently accurate navigation and positioning and subsequent binning errors. Observed aliasing in the 3-D migration was due to insufficient lateral sampling combined with the relatively high frequency (<2000 Hz) content of the water gun source (operated at 140 bars and 0.3 m depth). These results motivated the use of a double-chamber bubble-canceling air gun for Survey II. A 15 / 15 Mini G.I air gun operated at 80 bars and 1 m depth, proved to be better adapted for imaging the complexly faulted target area, which has reflectors dipping up to 30°. Although its frequencies do not exceed 650 Hz, this air gun combines a penetration of non-aliased signal to depths of 300 m below the water bottom (versus 145 m for the water gun) with a maximum vertical resolution of 1.1 m. While Survey I was shot in patches of alternating directions, the optimized surveying time of the new threestreamer system allowed acquisition in parallel geometry, which is preferable when using an asymmetric configuration (single source and receiver array). Otherwise, resulting stacks are different for the opposite directions. However, the shorter streamer configuration of Survey II reduced the nominal fold from 12 to 6. A 3-D conventional processing flow was adapted to the high sampling rates and was complemented by two computer programs that format the unconventional navigation data to industry standards. Processing included trace editing, geometry assignment, bin harmonization (to compensate for uneven fold due to boat/streamer drift), spherical divergence correction, bandpass filtering, velocity analysis, 3-D DMO correction, stack and 3-D time migration. A detailed semblance velocity analysis was performed on the 12-fold data set for every second in-line and every 50th CMP, i.e. on a total of 600 spectra. According to this velocity analysis, interval velocities range from 1450-1650 m/s for the unconsolidated sediments and from 1650-3000 m/s for the consolidated sediments. Delineation of several horizons and fault surfaces reveal the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3-D geometries can be distinguished in vertical and horizontal sections: lacustrine sediments (Holocene) , glaciolacustrine sediments (Pleistocene), Plateau Molasse, Subalpine Molasse and its thrust fault zone. Dips of beds within Plateau and Subalpine Molasse are ~8° and ~20°, respectively. Within the fault zone, many highly deformed structures with dips around 30° are visible. Preliminary tests with 3-D preserved-amplitude prestack depth migration demonstrate that the excellent data quality of Survey II allows application of such sophisticated techniques even to high-resolution seismic surveys. In general, the adaptation of the 3-D marine seismic reflection method, which to date has almost exclusively been used by the oil exploration industry, to a smaller geographical as well as financial scale has helped pave the way for applying this technique to environmental and engineering purposes.<br/><br/>La sismique rĂ©flexion est une mĂ©thode d?investigation du sous-sol avec un trĂšs grand pouvoir de rĂ©solution. Elle consiste Ă envoyer des vibrations dans le sol et Ă recueillir les ondes qui se rĂ©flĂ©chissent sur les discontinuitĂ©s gĂ©ologiques Ă diffĂ©rentes profondeurs et remontent ensuite Ă la surface oĂč elles sont enregistrĂ©es. Les signaux ainsi recueillis donnent non seulement des informations sur la nature des couches en prĂ©sence et leur gĂ©omĂ©trie, mais ils permettent aussi de faire une interprĂ©tation gĂ©ologique du sous-sol. Par exemple, dans le cas de roches sĂ©dimentaires, les profils de sismique rĂ©flexion permettent de dĂ©terminer leur mode de dĂ©pĂŽt, leurs Ă©ventuelles dĂ©formations ou cassures et donc leur histoire tectonique. La sismique rĂ©flexion est la mĂ©thode principale de l?exploration pĂ©troliĂšre. Pendant longtemps on a rĂ©alisĂ© des profils de sismique rĂ©flexion le long de profils qui fournissent une image du sous-sol en deux dimensions. Les images ainsi obtenues ne sont que partiellement exactes, puisqu?elles ne tiennent pas compte de l?aspect tridimensionnel des structures gĂ©ologiques. Depuis quelques dizaines d?annĂ©es, la sismique en trois dimensions (3-D) a apportĂ© un souffle nouveau Ă l?Ă©tude du sous-sol. Si elle est aujourd?hui parfaitement maĂźtrisĂ©e pour l?imagerie des grandes structures gĂ©ologiques tant dans le domaine terrestre que le domaine ocĂ©anique, son adaptation Ă l?Ă©chelle lacustre ou fluviale n?a encore fait l?objet que de rares Ă©tudes. Ce travail de thĂšse a consistĂ© Ă dĂ©velopper un systĂšme d?acquisition sismique similaire Ă celui utilisĂ© pour la prospection pĂ©troliĂšre en mer, mais adaptĂ© aux lacs. Il est donc de dimension moindre, de mise en oeuvre plus lĂ©gĂšre et surtout d?une rĂ©solution des images finales beaucoup plus Ă©levĂ©e. Alors que l?industrie pĂ©troliĂšre se limite souvent Ă une rĂ©solution de l?ordre de la dizaine de mĂštres, l?instrument qui a Ă©tĂ© mis au point dans le cadre de ce travail permet de voir des dĂ©tails de l?ordre du mĂštre. Le nouveau systĂšme repose sur la possibilitĂ© d?enregistrer simultanĂ©ment les rĂ©flexions sismiques sur trois cĂąbles sismiques (ou flĂ»tes) de 24 traces chacun. Pour obtenir des donnĂ©es 3-D, il est essentiel de positionner les instruments sur l?eau (source et rĂ©cepteurs des ondes sismiques) avec une grande prĂ©cision. Un logiciel a Ă©tĂ© spĂ©cialement dĂ©veloppĂ© pour le contrĂŽle de la navigation et le dĂ©clenchement des tirs de la source sismique en utilisant des rĂ©cepteurs GPS diffĂ©rentiel (dGPS) sur le bateau et Ă l?extrĂ©mitĂ© de chaque flĂ»te. Ceci permet de positionner les instruments avec une prĂ©cision de l?ordre de 20 cm. Pour tester notre systĂšme, nous avons choisi une zone sur le Lac LĂ©man, prĂšs de la ville de Lausanne, oĂč passe la faille de « La PaudĂšze » qui sĂ©pare les unitĂ©s de la Molasse du Plateau et de la Molasse Subalpine. Deux campagnes de mesures de sismique 3-D y ont Ă©tĂ© rĂ©alisĂ©es sur une zone d?environ 1 km2. Les enregistrements sismiques ont ensuite Ă©tĂ© traitĂ©s pour les transformer en images interprĂ©tables. Nous avons appliquĂ© une sĂ©quence de traitement 3-D spĂ©cialement adaptĂ©e Ă nos donnĂ©es, notamment en ce qui concerne le positionnement. AprĂšs traitement, les donnĂ©es font apparaĂźtre diffĂ©rents faciĂšs sismiques principaux correspondant notamment aux sĂ©diments lacustres (HolocĂšne), aux sĂ©diments glacio-lacustres (PlĂ©istocĂšne), Ă la Molasse du Plateau, Ă la Molasse Subalpine de la zone de faille et la Molasse Subalpine au sud de cette zone. La gĂ©omĂ©trie 3-D dĂ©taillĂ©e des failles est visible sur les sections sismiques verticales et horizontales. L?excellente qualitĂ© des donnĂ©es et l?interprĂ©tation de plusieurs horizons et surfaces de faille montrent le potentiel de cette technique pour les investigations Ă petite Ă©chelle en trois dimensions ce qui ouvre des voies Ă son application dans les domaines de l?environnement et du gĂ©nie civil
Replacing canes with an elasticated orthotic-garment in chronic stroke patients - The influence on gait and balance. A series of N-of-1 trials
Objective:To investigate the effect of replacing canes with an elasticated orthotic-garment on balanceand gait-function in chronic stroke survivors.Design:Experimental, N-of-1 series with a replicated, ABC design with randomised phase duration in ahome setting.Participants:Four cane using chronic stroke survivors (P1-4).Interventions:Phase A (9e12 weeks) cane-walkingâas usualâto establish baseline values; Phase B (9e16weeks) intervention: orthotic-garment worn throughout the day with maximal cane-use reduction;Phase C (9e10 weeks) participant-determined follow-up: either no walking-aid, orthotic-garment orcane.Outcome measures:Primary: Functional-Gait-Assessment (FGA), Secondary: Trunk-sway during walkingmeasured as Total-Angle-Area (TAAïżœ2) in frontal and sagittal-planes, both measured weekly.Results:Visual and statistical analysis of results showed significant improvements in FGA from phase Ato B in all participants. Improvement continued in phase C in P2, stabilized in P1 and P4 and deterioratedin P3. A Minimal-Clinical-Important-Difference of 6 points-change was achieved in P2&P4. Trunk-swayreduced during walking, indicating increased stability, in two participants from phase A to B and in threeparticipants from A to C but no TAA changes were statistically significant. In phase C participant-selectedwalking-aids were: P1 cane-usage reduced by 25%, P2 independent-walking with no assistive-device, S3usual cane-usage, P4 orthotic-garment with reduced cane-usage 2-3 days-a-week, usual cane-usage 4e5days.Conclusions:Although walking ability is multifactorial these results indicate that the choice of walking-aids can have a specific and clinically relevant impact on gait following stroke.âHands-freeâassistive-devices may be more effective than canes in improving gait-function in somepatients
Recommended from our members
Transpression between two warm mafic plates: The Queen Charlotte Fault revisited
The Queen Charlotte Fault is a transpressive transform plate boundary between the Pacific and North American plates offshore western Canada. Previous models for the accommodation of transpression include internal deformation of both plates adjacent to the plate boundary or oblique subduction of the oceanic plate; the latter has been the preferred model. Both plates are warm and mafic and have similar mechanical structures. New multichannel seismic reflection data show a near-vertical Queen Charlotte Fault down to the first water bottom multiple, significant subsidence east of the Queen Charlotte Fault, a large melange where the fault is in a compressive left step, and faulting which involves oceanic basement. Gravity modeling of profiles indicates that the Pacific plate is flexed downward adjacent to the Queen Charlotte Fault. Upward flexure of North America along with crust thickened relative to crust in the adjacent basin creates topography known as the Queen Charlotte Islands. Combined with other regional studies, these observations suggest that the plate boundary is a vertical strike-slip fault and that transpression is taken up within each plate
Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors
Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either 177Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) (177Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the 177Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the 177Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the 177Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the 177Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame. Conclusions Treatment with 177Lu-Dotatate resulted in markedly longer progression-free survival and a significantly higher response rate than high-dose octreotide LAR among patients with advanced midgut neuroendocrine tumors. Preliminary evidence of an overall survival benefit was seen in an interim analysis; confirmation will be required in the planned final analysis. Clinically significant myelosuppression occurred in less than 10% of patients in the 177Lu-Dotatate group. (Funded by Advanced Accelerator Applications; NETTER-1 ClinicalTrials.gov number, NCT01578239 ; EudraCT number 2011-005049-11
Recommended from our members
An Abrupt Transition in the Mechanical Response of the Upper Crust to Transpression along the Queen Charlotte Fault
The Queen Charlotte Fault (QCF) is a major strike-slip fault that forms the boundary between the Pacific and North American plates from 51° to 58° N. Near 53.2° N, the angle of oblique convergence predicted by the Mid-Ocean Ridge VELocity (MORVEL) interplate pole of rotation decreases from >15° in the south to <15° in the north. South of 53.2° N, the convergent component of plate motion results in the formation of a 40 km wide terrace on the Pacific plate west of QCF and earthquakes with thrust mechanisms (including the 2012 Haida Gwaii earthquake sequence) are observed. North of 53.2° N, in the primary rupture zone of the M 8.1 strike-slip earthquake of 1949, the linear terrace disappears, and topography of the continental slope west of the QCF is characterized by a complex pattern of ridges and basins that trend obliquely to the primary trace of the QCF. Deformation within the Pacific plate appears to occur primarily through strike-slip faulting with a minor thrust component on secondary synthetic faults. The orientations of these secondary faults, as determined from seismic reflection and bathymetric data, are consistent with the reactivation of faults originally formed as ridge-parallel normal faults and as thrust faults formed parallel to the QCF south of the bend at 53.2° N and subsequently translated to the north. We suggest that an oblique convergence angle of 15° represents a critical threshold separating distinct crustal responses to transpression. This result is consistent with theoretical and analog strain models of transpressive plate boundaries. The sharpness of this transition along the QCF, in contrast to purely continental transform boundaries, may be facilitated by the relatively simple structure of oceanic crust and the presence of pre-existing, optimally oriented faults in the young Pacific plate
Relational grounding facilitates development of scientifically useful multiscale models
We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM). Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor) typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module) models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding
- âŠ