6 research outputs found

    Anisotropic universal conductance fluctuations in disordered quantum wires with Rashba and Dresselhaus spin-orbit interaction and applied in-plane magnetic field

    Get PDF
    We investigate the transport properties of narrow quantum wires realized in disordered two-dimensional electron gases in the presence of k-linear Rashba and Dresselhaus spin-orbit interaction (SOI), and an applied in-plane magnetic field. Building on previous work [Scheid, et al., PRL 101, 266401 (2008)], we find that in addition to the conductance, the universal conductance fluctuations also feature anisotropy with respect to the magnetic field direction. This anisotropy can be explained solely from the symmetries exhibited by the Hamiltonian as well as the relative strengths of the Rashba and Dresselhaus spin orbit interaction and thus can be utilized to detect this ratio from purely electrical measurements.Comment: 10 pages, 4 figures, 1 tabl

    Extracting current-induced spins: spin boundary conditions at narrow Hall contacts

    Get PDF
    We consider the possibility to extract spins that are generated by an electric current in a two-dimensional electron gas with Rashba-Dresselhaus spin-orbit interaction (R2DEG) in the Hall geometry. To this end, we discuss boundary conditions for the spin accumulations between a spin-orbit coupled region and contact without spin-orbit coupling, i.e. a normal two-dimensional electron gas (2DEG). We demonstrate that in contrast to contacts that extend along the whole sample, a spin accumulation can diffuse into the normal region through finite contacts and detected by e.g. ferromagnets. For an impedance-matched narrow contact the spin accumulation in the 2DEG is equal to the current induced spin accumulation in the bulk of R2DEG up to a geometry-dependent numerical factor.Comment: 18 pages, 7 figures, submitted to NJP focus issue on Spintronic

    Spin Accumulation in Diffusive Conductors with Rashba and Dresselhaus Spin-Orbit Interaction

    Get PDF
    We calculate the electrically induced spin accumulation in diffusive systems due to both Rashba (with strength α)\alpha) and Dresselhaus (with strength β)\beta) spin-orbit interaction. Using a diffusion equation approach we find that magnetoelectric effects disappear and that there is thus no spin accumulation when both interactions have the same strength, α=±β\alpha=\pm \beta. In thermodynamically large systems, the finite spin accumulation predicted by Chaplik, Entin and Magarill, [Physica E {\bf 13}, 744 (2002)] and by Trushin and Schliemann [Phys. Rev. B {\bf 75}, 155323 (2007)] is recovered an infinitesimally small distance away from the singular point α=±β\alpha=\pm \beta. We show however that the singularity is broadened and that the suppression of spin accumulation becomes physically relevant (i) in finite-sized systems of size LL, (ii) in the presence of a cubic Dresselhaus interaction of strength γ\gamma, or (iii) for finite frequency measurements. We obtain the parametric range over which the magnetoelectric effect is suppressed in these three instances as (i) αβ1/mL|\alpha|-|\beta| \lesssim 1/mL, (ii)αβγpF2|\alpha|-|\beta| \lesssim \gamma p_{\rm F}^2, and (iii) |\alpha|-|\beta| \lesssiM \sqrt{\omega/m p_{\rm F}\ell} with \ell the elastic mean free path and pFp_{\rm F} the Fermi momentum. We attribute the absence of spin accumulation close to α=±β\alpha=\pm \beta to the underlying U (1) symmetry. We illustrate and confirm our predictions numerically

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Geometric Correlations and Breakdown of Mesoscopic Universality in Spin Transport

    Get PDF
    We construct a unified semiclassical theory of charge and spin transport in chaotic ballistic and disordered diffusive mesoscopic systems with spin-orbit interaction. Neglecting dynamic effects of spin-orbit interaction, we reproduce the random matrix theory results that the spin conductance fluctuates universally around zero average. Incorporating these effects into the theory, we show that geometric correlations generate finite average spin conductances, but that they do not affect the charge conductance to leading order. The theory, which is confirmed by numerical transport calculations, allows us to investigate the entire range from the weak to the previously unexplored strong spin-orbit regime, where the spin rotation time is shorter than the momentum relaxation time
    corecore