327 research outputs found
Measuring Temperature Gradients over Nanometer Length Scales
When a quantum dot is subjected to a thermal gradient, the temperature of
electrons entering the dot can be determined from the dot's thermocurrent if
the conductance spectrum and background temperature are known. We demonstrate
this technique by measuring the temperature difference across a 15 nm quantum
dot embedded in a nanowire. This technique can be used when the dot's energy
states are separated by many kT and will enable future quantitative
investigations of electron-phonon interaction, nonlinear thermoelectric
effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure
Surface Transitions for Confined Associating Mixtures
Thin films of binary mixtures that interact through isotropic forces and
directionally specific "hydrogen bonding" are considered through Monte Carlo
simulations. We show, in good agreement with experiment, that the single phase
of these mixtures can be stabilized or destabilized on confinement. These
results resolve a long standing controversy, since previous theories suggest
that confinement only stabilizes the single phase of fluid mixtures.Comment: LaTeX document, documentstyle[aps,preprint]{revtex}, psfig.sty,
bibtex, 13 pages, 4 figure
Surface and capillary transitions in an associating binary mixture model
We investigate the phase diagram of a two-component associating fluid mixture
in the presence of selectively adsorbing substrates. The mixture is
characterized by a bulk phase diagram which displays peculiar features such as
closed loops of immiscibility. The presence of the substrates may interfere the
physical mechanism involved in the appearance of these phase diagrams, leading
to an enhanced tendency to phase separate below the lower critical solution
point. Three different cases are considered: a planar solid surface in contact
with a bulk fluid, while the other two represent two models of porous systems,
namely a slit and an array on infinitely long parallel cylinders. We confirm
that surface transitions, as well as capillary transitions for a large
area/volume ratio, are stabilized in the one-phase region. Applicability of our
results to experiments reported in the literature is discussed.Comment: 12 two-column pages, 12 figures, accepted for publication in Physical
Review E; corrected versio
Out-of-Equilibrium Admittance of Single Electron Box Under Strong Coulomb Blockade
We study admittance and energy dissipation in an out-of-equlibrium single
electron box. The system consists of a small metallic island coupled to a
massive reservoir via single tunneling junction. The potential of electrons in
the island is controlled by an additional gate electrode. The energy
dissipation is caused by an AC gate voltage. The case of a strong Coulomb
blockade is considered. We focus on the regime when electron coherence can be
neglected but quantum fluctuations of charge are strong due to Coulomb
interaction. We obtain the admittance under the specified conditions. It turns
out that the energy dissipation rate can be expressed via charge relaxation
resistance and renormalized gate capacitance even out of equilibrium. We
suggest the admittance as a tool for a measurement of the bosonic distribution
corresponding collective excitations in the system
Assessing the Conditions for Multilateral Interventions or Non-Interventions: Intervention and Non-Intervention in the Asia Pacific Region
The focus of this thesis has been on the identification of the primary conditions that attract or deter multilateral interventions into internal conflicts in the Asia Pacific region. This thesis develops a framework which is applied to four cases of internal conflict to see what roles twenty-two structural and perceptual conditions have played in determining why multilateral intervention was initiated in two of the cases, and why multilateral intervention failed to be initiated in the other two cases. The research found that multilateral organizations will accept risks and costs associated with intervention if certain structural and perceptual conditions make intervention an attractive option. These conditions are, a favourable or significant international environment or international event(s), the consent of a sovereign state (even if it is induced), sustained and critical regional and international media coverage, a complete collapse of the state in conflict tainting it with the term 'failed state', a high probability of success, potential economic benefits, a humanitarian crisis (in respect of Unregulated Population Movements and genocide/politicide), the possibility of a clear exit strategy, and a self-interested Member State who can greatly subsidize an intervention. Multilateral non-interventions, on the contrary, are driven by a combination of a lack of sustained and critically analyzed media coverage on conflict issues and consequences, generally positive tactics and strategies adopted by disputants, conflicts of a long duration, the international environment, economic factors unfavourable to intervention, resistance levels to intervention or a failure to call for intervention, lack of any clear exit points, and an escalation phase. The importance of these conditions suggest that multilateral organizations are reluctant to take risks and costs when political will, for the collective and self, are not provoked. Consequently, particular structural and perceptual conditions trigger or influence political will. The analysis of four case studies (East Timor, Solomon Islands, Philippines (Moros), and West Papua) concludes that multilateral interventions will be the exception to the rule in the foreseeable future given the obvious selection bias evident in these policies, and the project questions the ad hoc determinants of current multilateral intervention policies
Electrical and thermoelectrical transport in Dirac fermions through a quantum dot
We investigate the conductance and thermopower of massless Dirac fermions
through a quantum dot using a pseudogap Anderson model in the non-crossing
approximation. When the Fermi level is at the Dirac point, the conductance has
a cusp where the thermopower changes its sign. When the Fermi level is away
from the Dirac point, the Kondo temperature illustrates a quantum impurity
transition between an asymmetric strong coupling Kondo state and a localized
moment state. The conductance shows a peak near this transition and reaches the
unitary limit at low temperatures. The magnitude of the thermopower exceeds
, and the thermoelectric figure of merit exceeds unity.Comment: 5 pages, 4 figure
Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves
Individual self-assembled Quantum Dots and Quantum Posts are studied under
the influence of a surface acoustic wave. In optical experiments we observe an
acoustically induced switching of the occupancy of the nanostructures along
with an overall increase of the emission intensity. For Quantum Posts,
switching occurs continuously from predominantely charged excitons (dissimilar
number of electrons and holes) to neutral excitons (same number of electrons
and holes) and is independent on whether the surface acoustic wave amplitude is
increased or decreased. For quantum dots, switching is non-monotonic and shows
a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of
positively charged and neutral excitons is observed at high surface acoustic
wave amplitudes. These findings are explained by carrier trapping and
localization in the thin and disordered two-dimensional wetting layer on top of
which Quantum Dots nucleate. This limitation can be overcome for Quantum Posts
where acoustically induced charge transport is highly efficient in a wide
lateral Matrix-Quantum Well.Comment: 11 pages, 5 figure
Autonomous UAV-based mapping of large-scale urban firefights
This paper describes experimental results from a live-fire data collect designed to demonstrate the ability of IR and acoustic sensing systems to detect and map high-volume gunfire events from tactical UAVs. The data collect supports an exploratory study of the FightSight concept in which an autonomous UAV-based sensor exploitation and decision support capability is being proposed to provide dynamic situational awareness for large-scale battalion-level firefights in cluttered urban environments. FightSight integrates IR imagery, acoustic data, and 3D scene context data with prior time information in a multi-level, multi-step probabilistic-based fusion process to reliably locate and map the array of urban firing events and firepower movements and trends associated with the evolving urban battlefield situation. Described here are sensor results from live-fire experiments involving simultaneous firing of multiple sub/super-sonic weapons (2-AK47, 2-M16, 1 Beretta, 1 Mortar, 1 rocket) with high optical and acoustic clutter at ranges up to 400m. Sensor-shooter-target configurations and clutter were designed to simulate UAV sensing conditions for a high-intensity firefight in an urban environment. Sensor systems evaluated were an IR bullet tracking system by Lawrence Livermore National Laboratory (LLNL) and an acoustic gunshot detection system by Planning Systems, Inc. (PSI). The results demonstrate convincingly the ability for the LLNL and PSI sensor systems to accurately detect, separate, and localize multiple shooters and the associated shot directions during a high-intensity firefight (77 rounds in 5 sec) in a high acoustic and optical clutter environment with no false alarms. Preliminary fusion processing was also examined that demonstrated an ability to distinguish co-located shooters (shooter density), range to <0.5 m accuracy at 400m, and weapon type
- …