27 research outputs found

    Journal of Immunology Research / Prophylactic mRNA vaccination against allergy confers long-term memory responses and persistent protection in mice

    Get PDF
    Recently, mRNA vaccines have been introduced as a safety-optimized alternative to plasmid DNA-based vaccines for protection against allergy. However, it remained unclear whether the short persistence of this vaccine type would limit memory responses and whether the protective immune response type would be maintained during recurrent exposure to allergen. We tested the duration of protective memory responses in mice vaccinated with mRNA encoding the grass pollen allergen Phl p 5 by challenging them with recombinant allergen, 3.5, 6, and 9 months after vaccination. In a second experiment, vaccinated mice were repeatedly challenged monthly with aerosolized allergen over a period of 7 months. Antibody and cytokine responses as well as lung inflammation and airway hyperresponsiveness were assessed. mRNA vaccination induced robust TH1 memory responses for at least 9 months. Vaccination efficiently suppressed TH2 cytokines, IgE responses, and lung eosinophilia. Protection was maintained after repeated exposure to aerosolized allergen and no TH1 associated pathology was observed. Lung function remained improved compared to nonvaccinated controls. Our data clearly indicate that mRNA vaccination against Phl p 5 induces robust, long-lived memory responses, which can be recalled by allergen exposure without side effects. mRNA vaccines fulfill the requirements for safe prophylactic vaccination without the need for booster immunizations.(VLID)179427

    Laser‐facilitated epicutaneous immunotherapy with depigmented house dust mite extract alleviates allergic responses in a mouse model of allergic lung inflammation

    Get PDF
    Background Skin-based immunotherapy of type 1 allergies has recently been re-investigated as an alternative for subcutaneous injections. In the current study, we employed a mouse model of house dust mite (HDM)-induced lung inflammation to explore the potential of laser-facilitated epicutaneous allergen-specific treatment. Methods Mice were sensitized against native Dermatophagoides pteronyssinus extract and repeatedly treated by application of depigmented D pteronyssinus extract via laser-generated skin micropores or by subcutaneous injection with or without alum. Following aerosol challenges, lung function was determined by whole-body plethysmography and bronchoalveolar lavage fluid was analyzed for cellular composition and cytokine levels. HDM-specific IgG subclass antibodies were determined by ELISA. Serum as well as cell-bound IgE was measured by ELISA, rat basophil leukemia cell assay, and ex vivo using a basophil activation test, respectively. Cultured lymphocytes were analyzed for cytokine secretion profiles and cellular polarization by flow cytometry. Results Immunization of mice by subcutaneous injection or epicutaneous laser microporation induced comparable IgG antibody levels, but the latter preferentially induced regulatory T cells and in general downregulated T cell cytokine production. This effect was found to be a result of the laser treatment itself, independent from extract application. Epicutaneous treatment of sensitized animals led to induction of blocking IgG, and improvement of lung function, superior compared to the effects of subcutaneous therapy. During the whole therapy schedule, no local or systemic side effects occurred. Conclusion Allergen-specific immunotherapy with depigmented HDM extract via laser-generated skin micropores offers a safe and effective treatment option for HDM-induced allergy and lung inflammation

    Laser‐facilitated epicutaneous immunotherapy with hypoallergenic beta‐glucan neoglycoconjugates suppresses lung inflammation and avoids local side effects in a mouse model of allergic asthma

    Get PDF
    Background Allergen-specific immunotherapy via the skin targets a tissue rich in antigen-presenting cells, but can be associated with local and systemic side effects. Allergen-polysaccharide neoglycogonjugates increase immunization efficacy by targeting and activating dendritic cells via C-type lectin receptors and reduce side effects. Objective We investigated the immunogenicity, allergenicity, and therapeutic efficacy of laminarin-ovalbumin neoglycoconjugates (LamOVA). Methods The biological activity of LamOVA was characterized in vitro using bone marrow-derived dendritic cells. Immunogenicity and therapeutic efficacy were analyzed in BALB/c mice. Epicutaneous immunotherapy (EPIT) was performed using fractional infrared laser ablation to generate micropores in the skin, and the effects of LamOVA on blocking IgG, IgE, cellular composition of BAL, lung, and spleen, lung function, and T-cell polarization were assessed. Results Conjugation of laminarin to ovalbumin reduced its IgE binding capacity fivefold and increased its immunogenicity threefold in terms of IgG generation. EPIT with LamOVA induced significantly higher IgG levels than OVA, matching the levels induced by s.c. injection of OVA/alum (SCIT). EPIT was equally effective as SCIT in terms of blocking IgG induction and suppression of lung inflammation and airway hyperresponsiveness, but SCIT was associated with higher levels of therapy-induced IgE and TH2 cytokines. EPIT with LamOVA induced significantly lower local skin reactions during therapy compared to unconjugated OVA. Conclusion Conjugation of ovalbumin to laminarin increased its immunogenicity while at the same time reducing local side effects. LamOVA EPIT via laser-generated micropores is safe and equally effective compared to SCIT with alum, without the need for adjuvant

    Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei

    Get PDF
    BACKGROUND: The Plasmodium protein Cell-traversal protein for ookinetes and sporozoites (CelTOS) plays an important role in cell traversal of host cells in both, mosquito and vertebrates, and is required for successful malaria infections. CelTOS is highly conserved among the Plasmodium species, suggesting an important functional role across all species. Therefore, targeting the immune response to this highly conserved protein and thus potentially interfering with its biological function may result in protection against infection even by heterologous species of Plasmodium. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we developed a recombinant codon-harmonized P. falciparum CelTOS protein that can be produced to high yields in the E. coli expression system. Inbred Balb/c and outbred CD-1 mice were immunized with various doses of the recombinant protein adjuvanted with Montanide ISA 720 and characterized using in vitro and in vivo analyses. CONCLUSIONS/SIGNIFICANCE: Immunization with PfCelTOS resulted in potent humoral and cellular immune responses and most importantly induced sterile protection against a heterologous challenge with P. berghei sporozoites in a proportion of both inbred and outbred mice. The biological activity of CelTOS-specific antibodies against the malaria parasite is likely linked to the impairment of sporozoite motility and hepatocyte infectivity. The results underscore the potential of this antigen as a pre-erythrocytic vaccine candidate and demonstrate for the first time a malaria vaccine that is cross-protective between species

    Informal and formal reconciliation strategies of older peoples’ working carers: the European carers@work project

    Get PDF
    Faced with a historically unprecedented process of demographic ageing, many European societies implemented pension reforms in recent years to extend working lives. Although aimed at rebalancing public pension systems, this approach has the unintended side effect that it also extends the number of years in which working carers have to juggle the conflicting demands of employment and caregiving. This not only impinges on working carers’ well-being and ability to continue providing care but also affects European enterprises’ capacity to generate growth which increasingly relies on ageing workforces. The focus of this paper will thus be a cross-national comparison of individual reconciliation strategies and workplace-related company policies aimed at enabling working carers to reconcile both conflicting roles in four different European welfare states: Germany, Italy, Poland, and the United Kingdom

    Immunization with a Borrelia burgdorferi BB0172-Derived Peptide Protects Mice against Lyme Disease

    Get PDF
    Lyme disease is the most prevalent arthropod borne disease in the US and it is caused by the bacterial spirochete Borrelia burgdorferi (Bb), which is acquired through the bite of an infected Ixodes tick. Vaccine development efforts focused on the von Willebrand factor A domain of the borrelial protein BB0172 from which four peptides (A, B, C and D) were synthesized and conjugated to Keyhole Limpet Hemocyanin, formulated in Titer Max® adjuvant and used to immunize C3H/HeN mice subcutaneously at days 0, 14 and 21. Sera were collected to evaluate antibody responses and some mice were sacrificed for histopathology to evaluate vaccine safety. Twenty-eight days post-priming, protection was evaluated by needle inoculation of half the mice in each group with 103 Bb/mouse, whereas the rest were challenged with 105Bb/mouse. Eight weeks post-priming, another four groups of similarly immunized mice were challenged using infected ticks. In both experiments, twenty-one days post-challenge, the mice were sacrificed to determine antibody responses, bacterial burdens and conduct histopathology. Results showed that only mice immunized with peptide B were protected against challenge with Bb. In addition, compared to the other the treatment groups, peptide B-immunized mice showed very limited inflammation in the heart and joint tissues. Peptide B-specific antibody titers peaked at 8 weeks post-priming and surprisingly, the anti-peptide B antibodies did not cross-react with Bb lysates. These findings strongly suggest that peptide B is a promising candidate for the development of a new DIVA vaccine (Differentiate between Infected and Vaccinated Animals) for protection against Lyme disease.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    Mast cells and γδ T cells are largely dispensable for adaptive immune responses after laser-mediated epicutaneous immunization

    No full text
    Background The skin resembles an attractive target for vaccination due to its accessibility and abundance of resident immune cells. Cells like γδ T cells and mast cells (MCs) are part of the first line of defence against exogenous threats. Despite being important mediators for eliciting TH2 immune responses after epithelial stress, γδ T cell and MC functions still remain to be completely understood. Here, we aimed to characterize their roles in shaping adaptive immune responses after laser-mediated epicutaneous immunization (EPI). Methods γδ T cell knock out, MC-depleted, and wildtype control mice were immunized with mannan-conjugated grass pollen allergen Phl p 5 (P5-MN) by laser-mediated EPI. After 2–3 immunizations, cytokine expression, T helper polarization, and antigen-specific IgG1/IgE levels were analysed. Furthermore, the local cytokine/chemokine milieu after laser microporation was determined. Results The majority of inflammatory chemokines and cytokines induced by laser treatment were not affected by the presence of γδ T cells or MCs. However, RANTES was elevated in γδ T cell knock out mice and GROα, TSLP, and IL-33 were significantly decreased after MC depletion. The absence of γδ T cells or depletion of MCs had no substantial effect on adaptive immune responses after laser-mediated EPI, except for slightly reduced IgG1 and effector T cell levels in MC-depleted mice. Conclusions γδ T cells did not play a pivotal role in shaping the humoral and cellular adaptive immune response after laser-mediated EPI. MC depletion decreased the numbers of effector T cells, indicating a potential role of MCs in the activation and maturation of T cells after EPI

    Multiple roles of Bet v 1 ligands in allergen stabilization and modulation of endosomal protease activity

    Get PDF
    Background: Over 100 million people worldwide suffer from birch pollen allergy. Bet v 1 has been identified as the major birch pollen allergen. However, the molecular mechanisms of birch allergic sensitization, including the roles of Bet v 1 and other components of the birch pollen extract, remain incompletely understood. Here, we examined how known birch pollen–derived molecules influence the endolysosomal processing of Bet v 1, thereby shaping its allergenicity. Methods: We analyzed the biochemical and immunological interaction of ligands with Bet v 1. We then investigated the proteolytic processing of Bet v 1 by endosomal extracts in the presence and absence of ligands, followed by a detailed kinetic analysis of Bet v 1 processing by individual endolysosomal proteases as well as the T-cell epitope presentation in BMDCs. Results: We identified E1 phytoprostanes as novel Bet v 1 ligands. Pollen-derived ligands enhanced the proteolytic resistance of Bet v 1, affecting degradation kinetics and preferential cleavage sites of the endolysosomal proteases cathepsin S and legumain. E1 phytoprostanes exhibited a dual role by stabilizing Bet v 1 and inhibiting cathepsin protease activity. Conclusion: Bet v 1 can serve as a transporter of pollen-derived, bioactive compounds. When carried to the endolysosome, such compounds can modulate the proteolytic activity, including its processing by cysteine cathepsins. We unveil a paradigm shift from an allergen-centered view to a more systemic view that includes the host endolysosomal enzymes

    Transcutaneous vaccination via laser microporation

    Get PDF
    Driven by constantly increasing knowledge about skin immunology, vaccine delivery via the cutaneous route has recently gained renewed interest. Considering its richness in immunocompetent cells, targeting antigens to the skin is considered to be more effective than intramuscular or subcutaneous injections. However, circumvention of the superficial layer of the skin, the stratum corneum, represents the major challenge for cutaneous immunization. An optimal delivery method has to be effective and reliable, but also highly adaptable to specific demands, should avoid the use of hypodermic needles and the requirement of specially trained healthcare workers. The P.L.E.A.S.E.® (Precise Laser Epidermal System) device employed in this study for creation of aqueous micropores in the skin fulfills these prerequisites by combining the precision of its laser scanning technology with the flexibility to vary the number, density and the depth of the micropores in a user-friendly manner. We investigated the potential of transcutaneous immunization via laser-generated micropores for induction of specific immune responses and compared the outcomes to conventional subcutaneous injection. By targeting different layers of the skin we were able to bias polarization of T cells, which could be modulated by addition of adjuvants. The P.L.E.A.S.E.® device represents a highly effective and versatile platform for transcutaneous vaccination
    corecore