234 research outputs found
Fluctuations of the electromagnetic local density of states as a probe for structural phase switching
We study the statistics of the fluorescence decay rates for single quantum emitters embedded in a scattering medium undergoing a phase transition. Under certain circumstances, the structural properties of the scattering medium explore a regime in which the system dynamically switches between two different phases. While in that regime the light-scattering properties of both phases are hardly distinguishable, we demonstrate that the lifetime statistics of single emitters with low diffusivity is clearly dependent on the dynamical state in which the medium evolves. Hence, lifetime statistics provides clear signatures of phase switching in systems where light scattering does not
The jamming elasticity of emulsions stabilized by ionic surfactants
Oil-in-water emulsions composed of colloidal-scale droplets are often stabilized using ionic surfactants that provide a repulsive interaction between neighboring droplet interfaces, thereby inhibiting coalescence. If the droplet volume fraction is raised rapidly by applying an osmotic pressure, the droplets remain disordered, undergo an ergodic–nonergodic transition, and jam. If the applied osmotic pressure approaches the Laplace pressure of the droplets, then the jammed droplets also deform. Because solid friction and entanglements cannot play a role, as they might with solid particulate or microgel dispersions, the shear mechanical response of monodisperse emulsions can provide critical insight into the interplay of entropic, electrostatic, and interfacial forces. Here, we introduce a model that can be used to predict the plateau storage modulus and yield stress of a uniform charge-stabilized emulsion accurately if the droplet radius, interfacial tension, surface potential, Debye screening length, and droplet volume fraction are known
Spatial field correlation, the building block of mesoscopic fluctuations
The absence of self averaging in mesoscopic systems is a consequence of
long-range intensity correlation. Microwave measurements suggest and
diagrammatic calculations confirm that the correlation function of the
normalized intensity with displacement of the source and detector,
and , respectively, can be expressed as the sum of three terms, with
distinctive spatial dependences. Each term involves only the sum or the product
of the square of the field correlation function, . The
leading-order term is the product, the next term is proportional to the sum.
The third term is proportional to .Comment: Submitted to PR
Statistical Signatures of Photon Localization
The realization that electron localization in disordered systems (Anderson
localization) is ultimately a wave phenomenon has led to the suggestion that
photons could be similarly localized by disorder. This conjecture attracted
wide interest because the differences between photons and electrons - in their
interactions, spin statistics, and methods of injection and detection - may
open a new realm of optical and microwave phenomena, and allow a detailed study
of the Anderson localization transition undisturbed by the Coulomb interaction.
To date, claims of three-dimensional photon localization have been based on
observations of the exponential decay of the electromagnetic wave as it
propagates through the disordered medium. But these reports have come under
close scrutiny because of the possibility that the decay observed may be due to
residual absorption, and because absorption itself may suppress localization.
Here we show that the extent of photon localization can be determined by a
different approach - measurement of the relative size of fluctuations of
certain transmission quantities. The variance of relative fluctuations
accurately reflects the extent of localization, even in the presence of
absorption. Using this approach, we demonstrate photon localization in both
weakly and strongly scattering quasi-one-dimensional dielectric samples and in
periodic metallic wire meshes containing metallic scatterers, while ruling it
out in three-dimensional mixtures of aluminum spheres.Comment: 5 pages, including 4 figure
Self-diffusion and structural properties of confined fluids in dynamic coexistence
Self-diffusion and radial distribution functions are studied in a strongly confined Lennard-Jones fluid. Surprisingly, in the solid–liquid phase transition region, where the system exhibits dynamic coexistence, the self-diffusion constants are shown to present up to three-fold variations from solid to liquid phases at fixed temperature, while the radial distribution function corresponding to both the liquid and the solid phases are essentially indistinguishable
Temperature oscillations of magnetization observed in nanofluid ferromagnetic graphite
We report on unusual magnetic properties observed in the nanofluid
room-temperature ferromagnetic graphite (with an average particle size of
l=10nm). More precisely, the measured magnetization exhibits a low-temperature
anomaly (attributed to manifestation of finite size effects below the quantum
temperature) as well as pronounced temperature oscillations above T=50K
(attributed to manifestation of the hard-sphere type pair correlations between
ferromagnetic particles in the nanofluid)
Field and intensity correlations in random media
Measurements of the microwave field transmitted through a random medium
allows direct access to the field correlation function, whose complex square is
the short range or C1 contribution to the intensity correlation function C. The
frequency and spatial correlation function are compared to their Fourier pairs,
the time of flight distribution and the specific intensity, respectively. The
longer range contribution to intensity correlation is obtained directly by
subtracting C1 from C and is in good agreement with theory.Comment: 9 pages, 5 figures, submitted to Phys.Rev.
Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study
We use lattice Boltzmann simulations, in conjunction with Ewald summation
methods, to investigate the role of hydrodynamic interactions in colloidal
suspensions of dipolar particles, such as ferrofluids. Our work addresses
volume fractions of up to 0.20 and dimensionless dipolar interaction
parameters of up to 8. We compare quantitatively with Brownian
dynamics simulations, in which many-body hydrodynamic interactions are absent.
Monte Carlo data are also used to check the accuracy of static properties
measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic
interactions slow down both the long-time and the short-time decays of the
intermediate scattering function , for wavevectors close to the peak of
the static structure factor , by a factor of roughly two. The long-time
slowing is diminished at high interaction strengths whereas the short-time
slowing (quantified via the hydrodynamic factor ) is less affected by the
dipolar interactions, despite their strong effect on the pair distribution
function arising from cluster formation. Cluster formation is also studied in
transient data following a quench from ; hydrodynamic interactions
slow the formation rate, again by a factor of roughly two
Testing the theory of immune selection in cancers that break the rules of transplantation
Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance
Temporal fluctuations of waves in weakly nonlinear disordered media
We consider the multiple scattering of a scalar wave in a disordered medium
with a weak nonlinearity of Kerr type. The perturbation theory, developed to
calculate the temporal autocorrelation function of scattered wave, fails at
short correlation times. A self-consistent calculation shows that for
nonlinearities exceeding a certain threshold value, the multiple-scattering
speckle pattern becomes unstable and exhibits spontaneous fluctuations even in
the absence of scatterer motion. The instability is due to a distributed
feedback in the system "coherent wave + nonlinear disordered medium". The
feedback is provided by the multiple scattering. The development of instability
is independent of the sign of nonlinearity.Comment: RevTeX, 15 pages (including 5 figures), accepted for publication in
Phys. Rev.
- …
