
1. Introduction

The thermodynamics and molecular dynamics of gases, liq-

uids, and solids confined to small spaces can differ signifi-

cantly from the bulk [1, 2]. The confinement of a fluid in a 

region few times the particle diameter induces density lay-

ering and solvation force oscillations [3–5] and can strongly 

modify the dynamical properties of the fluid [6–8], such as 

the diffusion of its constituents [9–13]. The confinement also 

affects many other macroscopic properties of the fluid [14], 

from capillary condensation [15, 16] to melting/freezing 

phase transitions [17–24].

For most liquids, the self-diffusion coefficient in highly 

confined geometries can decrease (the viscosity can increase) 

by several orders of magnitude with respect to the macro-

scopic bulk values [6, 7, 9–13]. Although confinement 

strongly affects local structuring, the relationships between 

self-diffusivity and thermodynamic quantities were found to 

be, to an excellent approximation, independent of the con-

finement [12, 25], suggesting that thermodynamics can be 

used to predict how confinement impacts dynamics [26]. 

More recently, it has been shown that dynamic and equilib-

rium properties have been explicitly related in supercooled 

and strongly confined liquids [27]. In clusters, crystal nuclea-

tion (or the transition from liquid to solid) takes place spon-

taneously in supersaturated solutions. The size of the clusters 

is crucial to its evolution: if reaches a critical value, it grows; 

otherwise it will re-dissolve [28]. According to classical 

nucleation theory, the transition is dominated by the sur-

face free energy that accounts for the solid liquid interface. 

However, in small clusters the surface free energy of the 

interface is so large that the system cannot afford coexistence 

between two different fases. As consequence, in equilibrium, 

the system jams from one phase to another and space coex-

istence in not possible. Due to this impossibility of forming 

interfaces, the dynamics strongly differs from that observer 

in ether van der Waals systems and/or hard spheres with col-

loidal systems [29]. These findings open an interesting ques-

tion about the nature of the self-diffusion near the freezing/

melting transition in confined geometries. In contrast with 
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macroscopic systems, for small clusters the transition does 

not take place at a well defined temperature: there is a finite 

temperature range where solid and liquid phases may coexist 

dynamically in time [17, 19–21, 30–33], i.e. observing the 

cluster over a long time, the cluster fluctuates between being 

entirely solid or liquid.

Numerical simulations have been extensively used to 

analyze the size dependence of the thermodynamic prop-

erties of confined fluids and clusters [17, 20, 21, 34, 35]. 

Concerning the dynamics and size-dependence of self- 

diffusion in confined fluids, most of the theoretical work 

have been focused on numerical molecular dynamics (MD) 

simulations [9–13, 36, 37]. Dynamic coexistence is not 

always observed in simulations [38] but the observation of 

dynamic coexistence will of course depend on the time scale 

on which dynamic coexistence occurs [33], which can be 

very large depending on the magnitude of the energy barrier 

separating the solid and liquid states of the cluster. Dynamic 

Monte Carlo (DMC) simulations [39] offer an alternative 

approach that can be used to describe self-diffusion at large 

time scales [40] where both MD and DMC simulations 

reveals self-diffusion in confined fluids as a thermal acti-

vated process [13].

In this work we analyze and discuss the peculiar behavior 

of the self-diffusion coefficients and radial distribution func-

tion, ( )g r , in a confined Lennard-Jones (L-J) fluid in the solid–
liquid dynamic coexistence region. We show that the spatial 

average of the self-diffusion coefficients vary largely from 

liquid to the solid phase, providing an unambiguous signature 

of the actual phase state. Interestingly, we find that the ( )g r  is 

essentially indistinguishable between both phases. This indi-

cates that the system is in an amorphous solid phase rather 

than crystal-like. This finding is supported by the observed 

split-second peak of g(r) which is reminiscent of the behavior 

observed in nearly jammed disordered hard-sphere (HS) pack-

ings [41]. We shall term solid or solid-like to such a phase 

throughout this paper.

It is worth emphasizing at this point that the interaction 

potential is not hard-sphere although some similarities can be 

established between HS and L-J systems. On the other hand, 

we consider spatially averaged quantities. We shall show that, 

despite the possible spatial dependence of the diffusion coef-

ficients, spatially averaged quantities already contain the sig-

nature of the the actual dynamic state of the system.

2. Lennard-Jones model

More specifically, we study the self-diffusion coefficient of a 

medium size (515 atoms) L-J cluster confined in a spherical 

cavity as a function of the temperature. In the liquid (fluid-

like) phase, just above the melting temperature, the self-dif-

fusion coefficient obtained from DMC numerical simulations 

follows the typical Arrhenius behavior expected for thermal 

activated diffusion. In the coexistence region, the self-

diffusion randomly jumps between liquid-like to solid-like 

reinforcing the relationship between dynamic and thermo-

dynamic properties even in this region. Although the con-

finement induces a strong anisotropy of the pair-correlation 

functions of the fluid [42], we find no significant differences 

in the average radial distribution function between the two 

phases. Our results suggest that the direct observation of 

dynamic coexistence could be accessible by experimental 

approaches sensitive to self-diffusion by nuclear magnetic 

resonance [43] or fluorescence correlation spectroscopy [44] 

measurements for instance.

2.1. Monte Carlo simulations

We start by studying a canonical ensemble of point particles 

interacting through a L-J potential:
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where ε is the depth of the potential well, r is the distance 

between particles and rm is the equilibrium distance.

The L-J fluid is confined inside a sphere. In order to con-

sider a high density in the system, the radius of the confining 

sphere is chosen in such a way that a highly symmetric por-

tion of a face centered cubic (FCC) lattice fits the spherical 

volume. To have nearly relaxed structures at zero temperature, 

the nearest neighbors distance of the FCC lattice is chosen to 

be the equilibrium distance rm.

Throughout this work, unless otherwise specified, we con-

sider 515 confined point particles interacting through the L-J 

potential given by equation  (1), being the number density 

ρ −� r1.07 m
3. To have a clearer picture on how compact this 

system is, we define an effective filling fraction φ by con-

sidering that each particle effectively occupies a spherical 

volume of radius rm/2. The effective filling fraction of the 

system under consideration is φ� 56%.

In order to generate a suitable statistical ensemble at fixed 

temperature, we perform standard MC simulations using the 

canonical ensemble. We depart from a crystalline structure 

and perform 10 8 of MC steps to thermalise the system. After 

this process an extensive MC sampling is performed (105 

configurations, each configuration obtained after 105 single-

particle MC steps). Temperature and energy is given in units 

of the potential well.

2.2. Phase transitions in the system

We determine the temperatures of the (isochore) phase trans-

ition in the system by considering the specific heat (SH). The 

SH Cv is obtained through the fluctuations of the internal 

energy [45]:
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Considering the behavior of the specific heat as function of 

temperature, as shown in figure 1(a), we observe a high and 

narrow peak, which we ascribe to a first order phase transition 

for ≈T 0.5. Notice that in the phase transition region we have 

relevant fluctuations, as can be observed in figure 1(c). Also 

we observe a modification on SH for temperatures between 

� �T0.4 0.5 (figure 1(b)), this feature in the SH might be 

attributed to a pre-melting region.
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In order to better describe the phase transitions in the 

system, we also estimate the self-diffusion coefficient in the 

system as a function of the temperature. To do so, the mean 

squared displacement (MSD) ΔR2  of particles as function 

of the performed MC steps were fitted to a linear law. In 

figure 6(d) we show some representative cases of this fitting 

procedure. From the slope the ΔR2  versus the number of 

Montecarlo steps the diffusion coefficient is extracted. Since 

we take the averaged ΔR2  considering all the particles at 

the same foot, we have a spatial average of the diffusion coef-

ficient. One might expect to find strong inhomogeneities and 

anisotropy leading to an inhomogeneous diffusion tensor 

instead of the averaged scalar values we obtain with our pro-

cedure. Nevertheless, we shall see that this averaged diffusion 

constant suffices to identify phase transitions and a dynamical 

phase switching regime in our system.

In figure 2 we plot the diffusion coefficient (D) as a func-

tion of temperature for three different systems with different 

number of particles and different volumes, while keeping a 

constant number density. We observe that the diffusion coeffi-

cient, for this scale, does not depend of the size of the system.

Three regions can be identified in figure  2. In the first 

region, for normalized temperatures �T 0.4, the structure 

is crystalline and diffusion is strongly inhibited. This fact 

is compatible with a pure solid phase. The diffusion coef-

ficient grows with temperature at an approximately con-

stant rate in the range � �T0.4 0.5 (see figure 2(b)). This 

apparent increase in D signals a pre-melting. It is worth 

noticing that this region does not correspond to any remark-

able feature in the specific heat. The slope of the diffusion 

constant shows a strong increase at about �T 0.5, this kink 

in the diffusion coefficient curve corresponds to the peak in 

the specific heat.

In summary, we can establish a phase landscape in which, 

we identify a pre-melting region that starts at �T 0.4, and a 

(solid–liquid) phase transition at �T 0.5. In the following sec-

tions we shall focus on the behavior of the system in the phase 

transition region.

3. Phase switching

In figure 3 we represent the particle energy as function of the 

MC steps for temperature =T 0.536 25, which corresponds 

to a temperature in the phase transition region. The system at 

this temperature oscillates between a lower and a higher value 

of energy. This bistable energy behavior is the responsible for 

the fluctuations in the SH. Despite the large number of MC 

steps used in the sampling, we observe in figure  3 that the 

number of high and low energy regions is relatively reduced. 

Hence, if we calculate the SH through the energy fluctuations 

of internal energy, large fluctuations due to finite sampling is 

expected as observed in figure 1(c).

Representing the internal energy histogram as function of 

the temperature, shown in figure 4, we can identify an energy 

gap for temperatures at the phase transition. The transition 

between solid and liquid is not smooth with phase coexistence 

between two states. Instead, the system switches between this 

two phases, with abrupt modifications in a small number of 

MC cycles. In the phase transition, when the particles exhibit 

a low energy configuration, the system is in the solid phase. 

For higher energies, the system is in the liquid phase.

One might expect to find intermediate energetic states in 

the sampling. If both phases coexist the system might switch, 

or smoothly evolve, among a multitude of different closely 

spaced energetic states. Nevertheless in all the examined cases 

the system exclusively switches between two well defined 

states.

In fact one might expect phase coexistence for larger sys-

tems, however, it seems that the size of the current system 

is small enough to preclude phase coexistence. Apparently 

the system is so small that a nucleation bubble fills the entire 

available volume.

In order to better understand the geometrical and dynam-

ical properties of the system in the phase switching region, 

we observe that the system remains in either the lower or 

the upper energy branches for a sufficient amount of time 

(MC steps) to consider both the structural (pair correlation 

Figure 1. Specific heat as function of temperature for a confined L-J 
system with N  =  515 particles and an effective filling fraction φ� 56%.  
Zooms of the specific heat is represent in the box (b) and (c).
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Figure 2. (a) Diffusion coefficient as a function of the temperature, 
for three different system sizes of the system at constant particle 
density. (b) Zoom of the same plot in the range 0.15  <  T  <  0.75.
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function) or dynamical (self-diffusion constant) properties in 

well defined phases.

So far we focused our attention to a system with high 

number density (effective filling fraction φ� 56%). Since 

the interaction potential, although possessing a strong repul-

sive core, is not a hard-core one, we expect that this behavior 

can be maintained down to lower densities. We have per-

formed several MC runs on a system with an effective filling 

fraction φ = 45% obtaining similar results for the Cv as a 

function of temperature and a finite phase transition region. 

In figure 5(a), the SH as a function of T is represented. In 

analogy with previous results, the SH curve shows different 

areas separated by a narrow peak at the phase transition 

region. Again, the SH in this region strongly fluctuates due 

to the finite sampling.

In figure 5(b) we plot an energy sampling analogous to the 

one appearing in figure 3(a). In this case the temperature is 

T  =  0.485, corresponding to the maximum of the SH peak. 

This energy sampling suggests that at this lower density, 

the phase systems also might switch between two different 

dynamical states. However the switching apparently hap-

pens at a much lower rate than in the previous case. Notice 

that in this case we performed  ∼ ×1.5 109 MC steps to detect 

one switching event in the energy, while in figure 3(a) sev-

eral events were detected using much less MC steps. Hence, 

although extensive simulations would be required, we conjec-

ture that the dynamical behavior presented in this work might 

be found for any high enough density. The exact meaning 

of high enough density can not be explicitly given with the 

Figure 3. (a) Energy sampling of a confined L-J system during 
a full MC run at a temperature =T 0.536 25, corresponding to a 
phase-switching region. (b) Energy histogram obtained from the 
MC sampling in (a).

Figure 4. (a) Color map showing the energy distribution 
functions as a function of the temperature. (b) Zoom in the region 
corresponding to the solid–liquid phase transition.

Figure 5. (a) Specific heat as function of temperature for a confined 
L-J system with N  =  515 particles and an effective filling fraction 
φ� 45%. Zooms of the specific heat is represent in the inset.  
(b) Energy sampling for the same system during a full MC run at a 
temperature T  =  0.485, corresponding to a phase-switching region.
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available data. In the remainder of this paper, we shall deal 

only with φ = 0.56 systems.

Using much larger systems might allow for the appearance 

of more than two energy levels and diffusion constants. As 

a result, the system would evolve with its size to a regime 

in which actual phase coexistence instead of phase switching 

takes place.

3.1. Dynamical properties in the switching regime

Regarding dynamical properties, in figures 6(a)–(c) we plot the 

self-diffusion constant as a function of temperature much in 

the same way as done in figure 2. In this case, we have split 

the statistical ensemble in two different sets for temperatures 

in the phase switching region, one corresponding to the high 

energy branch (liquid phase), and the other one corresponding 

to lower energy branch (solid phase). In figure 6(c) it appears 

evident that the diffusion coefficients corresponding to both 

phases can differ by a large amount. In the case under study, 

the diffusion constant differs by a factor 3 between phases at 

the same temperature.

In figure  6(d) we show several examples of the evol-

ution of the mean squared displacement as a function of the 

number of MC steps. In all the examined cases, the max-

imum root mean squared value is well below the radius of 

the confining sphere, hence we do not expect saturation 

effects due to confinement. Nevertheless, at higher temper-

atures and long simulation times, the MSD tends to saturate 

after a purely diffusive region as expected (not shown for the 

sake of brevity).

3.2. Geometrical properties in the switching regime

Regarding geometrical properties of both phases at the phase 

switching region, we have studied the radial distribution 

function ( )g r  [46, 47]. This function is defined as the ratio 

of the average number density at a distance r from one par-

ticle to the averaged number density of an hypothetical, fully 

uncorrelated, system. Hence, the radial distribution function 

describes the correlation in the interparticle distance in the 

system. Again, we can distinguish the statistical sampling in 

two sets associated with upper and lower energy branches in 

the phase switching region. Contrary to the behavior of the 

diffusion constants, the radial distribution function in the 

upper and lower energy branches is very similar. In figure 7 

we represent the ( )g r  for the configurations at both the liquid 

and solid phase at a fixed temperature. The only marked dif-

ference is the indicated split-second peak of ( )g r  which for 

bulk packings of hard spheres is a known signature of a solid 

phase [41, 48]. Other than that the radial distribution functions 

( )g r  remain nearly identical when the switching from solid 

to liquid phases and a clear identification of different phases 

through structural measurements is therefore much less sensi-

tive than through dynamical measurements (e.g. self-diffusion 

constants) in strongly confined systems.

Figure 6. (a) Self-diffusion coefficient for a 515 particle system as 
a function of temperature. Arrows indicate the points corresponding 
to data in panel (d). (b) Zoom of the self-diffusion coefficient in the 
range ⩽ ⩽T0.35 0.6. (c) Self-diffusion coefficients as a function 
of temperature obtained for the liquid phase (upper branch) and 
the solid phase (lower branch) in the region of phase-switching. 
(d) Mean squared displacement as a function of MC steps for 
different data points shown in (a) as indicated by the arrows of the 
corresponding color. Red lines indicate the linear fit from whose 
slope the diffusion coefficient is extracted.

Figure 7. Radial distribution function ( )g r  obtained at a fixed 
temperature in the phase switching region ( �T 0.53) for both the 
solid (black line) and liquid (red line) phases. Blue vertical lines 
correspond to a perfect FCC crystal.
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4. Conclusion

In summary, we have studied the self-diffusion in a strongly 

confined Lennard-Jones system. For small clusters, of the 

order of a few hundreds of particles, instead of phase coex-

istence the system present dynamic phase switching between 

solid-like and liquid-like amorphous phases. We found that the 

self-diffusion coefficient of the liquid-like phase in the phase-

switching region can be up to a factor of three larger than the 

one associated to the solid phase. Interestingly, although the 

radial distribution functions are nearly the same a split-second 

peak is observed as a subtle structural signature of transient 

solid phase.
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