695 research outputs found

    Goal-directed fluid management based on stroke volume variation and stroke volume optimization during high-risk surgery: a pilot multicentre randomized controlled trial

    Get PDF
    Introduction: Perioperative hemodynamic optimization has been shown to be useful to improve the postoperative outcome of patients undergoing major surgery. We designed a pilot study in patients undergoing major abdominal, urologic or vascular surgery to investigate the effects of a goal-directed (GD) fluid management based on continuous stroke volume variation (SVV) and stroke volume (SV) monitoring on postoperative outcomes. Methods: Fifty-two high-risk-surgical patients (ASA 3 or 4, arterial and central venous catheter in place, postoperative admission in ICU) were randomized either to a control group (Group C, n = 26) or to a goal-directed group (Group G, n = 26). Patients with cardiac arrhythmia or ventilated with a tidal volume <7 ml/kg were excluded. In Group G, SVV and SV were continuously monitored with the FloTrac™/Vigileo™ system (Edwards Lifesciences, USA) and patients were brought to and maintained on the plateau of the Frank-Starling curve (SVV <10% and SV increase <10% in response to fluid loading). During the ICU stay, organ dysfunction was assessed using the SOFA score and resource utilization using the TISS score. Patients were followed up to 28 days after surgery for infectious, cardiac, respiratory, renal, hematologic and abdominal complications. Results: Group G and Group C were comparable for ASA score, comorbidities, type and duration of surgery (275 vs. 280 minutes), heart rate, MAP and CVP at the start of surgery. However, Group G was younger than Group C (68 vs. 73 years, P < 0.05). During surgery, Group G received more colloids than Group C (1,589 vs. 927 ml, P < 0.05) and SVV decreased in Group G (from 9.0 to 8.0%, P < 0.05) but not in Group C. The number of postoperative wound infections was lower in Group G (0 vs. 7, P < 0.01). Although not statistically significant, the proportion of patients with at least one complication (46 vs. 62%), the number of postoperative complications per patient (0.65 vs. 1.40), the maximum ICU SOFA score (5.9 vs. 7.2), and the cumulative ICU TISS score (69 vs. 83) were also lower in Group G. ICU and hospital length of stay were similar in both groups. Conclusion: Although the two groups were not perfectly matched, this pilot shows that fluid management based on SVV and SV optimization decreases wound infections. It also suggests that such a GD strategy may decrease postoperative organ dysfunction and resource utilization. However, this remains to be confirmed by a larger study

    Measurements of reactive chlorocarbons over the Surinam tropical rain forest: indications for strong biogenic emissions

    No full text
    International audienceContrary to the understanding of the emissions and chemical behavior of halocarbons from anthropogenic sources (e.g. CFCs and HCFCs), the biogeochemistry of naturally emitted halocarbons is still poorly understood. We present measurements of chloromethane (methyl chloride, CH3Cl), trichloromethane (chloroform, CHCl3), dichloromethane (CH2Cl2), and tetrachloroethylene (C2Cl4) from air samples taken over the Surinam rainforest during the 1998 LBA/CLAIRE campaign. The samples were collected in stainless steel canisters on-board a Cessna Citation jet aircraft and analyzed in the laboratory using a gas chromatograph equipped with FID and ECD. The chlorocarbons we studied have atmospheric lifetimes of ~1 year or less, and appear to have significant emissions from natural sources including oceans, soils and vegetations, as well as biomass burning. These sources are primarily concentrated in the tropics (30º N-30º S). We detected an increase as a function of latitude of methyl chloride, chloroform, and tetrachloroethylene mixing ratios, in pristine air masses advected from the Atlantic Ocean toward the central Amazon. In the absence of significant biomass burning sources, we attribute this increase to biogenic emissions from the Surinam rainforest. From our measurements, we deduce fluxes from the Surinam rainforest of 7.6±1.8 ?g CH3Cl m?2 h?1, 1.11±0.08g CHCl3 ?m?2 h?1, and 0.36±0.07 ?g C2Cl4 m?2 h?1. Extrapolated to a global scale, our emission estimates suggest a large potential source of 2 Tg CH3Cl yr?1 from tropical forests, which could account for the net budget discrepancy (underestimation of sources), as indicated previously. In addition, our estimates suggest a potential emission of 57±17\,Gg C2C4 yr?1 from tropical forest soils, equal to half of the currently missing C2Cl4 sources. We hypothesize that the extensive deforestation over the last two decades relates to the observed global downward trend of atmospheric methyl chloride

    This is your toolkit in hemodynamic monitoring

    Get PDF
    Determination of accurate diagnosis and prognosis for patients suspected of circulatory shock is essential for optimal decision-making. Numerous techniques are available, and each has its specific indications and value

    Características e desempenho agronômico da cultivar de trigo BRS 220 no estado de Santa Catarina.

    Get PDF
    bitstream/CNPT-2010/40301/1/p-bp28.pd

    Cultivar de trigo BRS 208: produtividade, rusticidade e qualidade.

    Get PDF
    Desenvolvimento da cultivar; Caracteristicas botanicas e agronomicas; Caracteristcas botanicas; Caracteristicas agronomicas; Ciclo; Alta da planta (AP); Acamamento (Ac); Peso do hectolitro (PH); Reacao a doencas; Rendimento de graos; Resposta ao controle de doencas pela aplicacao; Densidade; Epoca de semeadura; Qualidade industrial.bitstream/CNPSO/2730/1/circtec31.pd

    The contemporary pulmonary artery catheter. Part 1:placement and waveform analysis

    Get PDF
    Nowadays, the classical pulmonary artery catheter (PAC) has an almost 50-year-old history of its clinical use for hemodynamic monitoring. In recent years, the PAC evolved from a device that enabled intermittent cardiac output measurements in combination with static pressures to a monitoring tool that provides continuous data on cardiac output, oxygen supply and-demand balance, as well as right ventricular (RV) performance. In this review, which consists of two parts, we will introduce the difference between intermittent pulmonary artery thermodilution using cold bolus injections, and the contemporary PAC enabling continuous measurements by using a thermal filament which at random heats up the blood. In this first part, the insertion techniques, interpretation of waveforms of the PAC, the interaction of waveforms with the respiratory cycle and airway pressure as well as pitfalls in waveform analysis are discussed. The second part will cover the measurements of the contemporary PAC including measurement of continuous cardiac output, RV ejection fraction, end-diastolic volume index, and mixed venous oxygen saturation. Limitations of all of these measurements will be highlighted there as well. We conclude that thorough understanding of measurements obtained from the PAC are the first step in successful application of the PAC in daily clinical practice

    The contemporary pulmonary artery catheter. Part 2:measurements, limitations, and clinical applications

    Get PDF
    Nowadays, the classical pulmonary artery catheter (PAC) has an almost 50-year-old history of its clinical use for hemodynamic monitoring. In recent years, the PAC evolved from a device that enabled intermittent cardiac output measurements in combination with static pressures to a monitoring tool that provides continuous data on cardiac output, oxygen supply and-demand balance, as well as right ventricular performance. In this review, which consists of two parts, we will introduce the difference between intermittent pulmonary artery thermodilution using bolus injections, and the contemporary PAC enabling continuous measurements by using a thermal filament which heats up the blood. In this second part, we will discuss in detail the measurements of the contemporary PAC, including continuous cardiac output measurement, right ventricular ejection fraction, end-diastolic volume index, and mixed venous oxygen saturation. Limitations of all of these measurements are highlighted as well. We conclude that thorough understanding of measurements obtained from the PAC is the first step in successful application of the PAC in daily clinical practice
    corecore