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 CURRENT
OPINION This is your toolkit in hemodynamic monitoring

Thomas Kaufmanna, Iwan C.C. van der Horstb,c,
and Thomas W.L. Scheerena

Purpose of review

To appraise the basic and more advanced methods available for hemodynamic monitoring, and describe
the definitions and criteria for the use of hemodynamic variables.

Recent findings

The hemodynamic assessment in critically ill patients suspected of circulatory shock follows a step-by-step
algorithm to help determine diagnosis and prognosis. Determination of accurate diagnosis and prognosis
in turn is crucial for clinical decision-making. Basic monitoring involving clinical examination in
combination with hemodynamic variables obtained with an arterial catheter and a central venous catheter
may be sufficient for the majority of patients with circulatory shock. In case of uncertainty of the underlying
cause or to guide treatment in severe shock may require additional advanced hemodynamic technologies,
and each is utilized for different indications and has specific limitations. Future developments include
refining the clinical examination and performing studies that demonstrate better patient outcomes by
targeting hemodynamic variables using advanced hemodynamic monitoring.

Summary

Determination of accurate diagnosis and prognosis for patients suspected of circulatory shock is essential
for optimal decision-making. Numerous techniques are available, and each has its specific indications and
value.

Keywords

cardiac output, circulatory shock, clinical examination, decision-making, hemodynamic monitoring

INTRODUCTION

Hemodynamic monitoring plays a fundamental
part in the initial assessment and the subsequent
guidance of the treatment of critically ill patients
suspected of or suffering from circulatory shock
[1,2]. Different methods of monitoring to obtain
hemodynamic variables exist, and for the care of
critically ill patients, there are recommendations for
their use in an escalating or step-by-step manner
[3

&&

].
Every step of the assessment of a patient pro-

vides the physician with information regarding
diagnosis and a patient’s prognosis. Diagnosis is
the process of determining the disease or condition
that explains a patient’s symptoms. Multiple signs
and symptoms can be present simultaneously, and
each has a specific value (i.e. diagnostic accuracy) in
the diagnostic process. Prognosis is the process of
predicting the development and outcome of the
disease. With prognosis, an educated guess on the
improvement or deterioration of the disease can be
made, which can then be applied in decision-mak-
ing. For the processes of diagnosis and prognosis,
hemodynamic variables have different values, for

example, some might be useful to establish a diag-
nosis but are not an independent factor in the
prognosis and vice versa. Therefore, the process of
understanding the obtained results and putting
them into clinical context depends on education
and the available evidence. The latter can be ham-
pered by the variability in the methodology of cur-
rent studies [4].

Scenario: a 74-year-old female with a medical
history of hypertension, type 2 diabetes, and a pre-
vious stroke was admitted to the ICU after she had
undergone a laparotomy for bowel perforation. Her
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current blood pressure is 94/54 mmHg (mean arte-
rial pressure, MAP 67 mmHg), and her heart rate is
78 bpm. She looks pale and clammy on clinical
examination, and her extremities are subjectively
cold. Capillary refill time (CRT) on the right distal
index finger is 4 s, and she has a mottling score of 2
on both knees. You decide to give half a liter of
intravenous fluids, and the nurse asks you:

(1) What is the underlying cause of these symp-
toms? (i.e. diagnosis)

(2) How will she develop in the next hours or days?
(i.e. prognosis)

To answer these daily questions, we critically
appraise the different methods, your tools, and
describe the exact definitions and values of the
hemodynamic variables that can be obtained using
these methods. We apply these tools in a clinical
scenario to guide clinical decision-making in a
realistic context.

THE GENERAL IDEA OF HEMODYNAMIC
MONITORING

About one-third of patients in the ICU eventually
experience circulatory shock, and patients with cir-
culatory shock have increased risks of multiorgan
failure, long-term morbidity, and mortality [5].
The underlying pathophysiology of circulatory
shock can be complex and depends on the type of
shock. For instance, patients can present with

hypovolemia, myocardial dysfunction, and alter-
ation of vascular tone. The hemodynamic assess-
ment is considered to be even more difficult if
patients are also burdened with comorbidities [6].
Each of the components of circulatory shock needs
to be measured correctly as a prerequisite for proper
decision-making.

CLINICAL EXAMINATION

Clinical examination of the cardiovascular system
can be used to assess perfusion or to estimate cardiac
output (CO), and its daily application in critically ill
patients makes it the first step of hemodynamic
monitoring in suspected circulatory shock. How-
ever, much remains unknown about the value of
clinical examination in the diagnosis and prognosis
of circulatory shock [7]. The issue with the clinical
examination is that its extensive use in critically ill
patients is contrasted with a limited number of
studies assessing its value, which leads to the level
of evidence being considered as best practice [1].
One of the reasons is that the introduction of the
pulmonary artery catheter (PAC) in the 1970s
markedly changed clinical practice and led to a
decline in a physician’s reliance on clinical exami-
nation [8,9]. The introduction of this and other new
monitoring techniques has also changed the defini-
tion and the significance of the clinical examina-
tion, and the integration of bedside diagnostic tools
is now an inherent part of the intensivists’ curricu-
lum [10].

The diagnostic accuracy of using clinical exami-
nation to estimate CO is only similar to that of the
flip of a coin [7]. Single variables, such as the mot-
tling score or CRT, should not be used for that
purpose as univariable analyses show poor correla-
tions between them and CO, while several variables
combined into a structured clinical examination
showed good accuracy [7]. No standardized defini-
tion exists of how to obtain some of these clinical
examination findings, so different methods of mea-
surement were used [7]. The goal of clinical exami-
nation of the cardiovascular system is not only to
estimate a CO value but also to assess sufficiency of
perfusion. The same CO value may be sufficient for
perfusion in one patient but insufficient in another.

Recently, a study determined the value of a
structured clinical examination in critically ill
patients as part of an observational study [11

&&

].
The authors showed that several clinical examina-
tion findings [i.e. blood pressure, central-to-periph-
eral temperature difference (DTc–p), and CRT] were
independently associated with cardiac index [11

&&

].
However, these variables were found to be of in-
sufficient value to estimate cardiac index in

KEY POINTS

� The definition and criterion of each hemodynamic
variable of the clinical examination in circulatory shock
need to be applied uniformly for optimal diagnostic
and prognostic value.

� Simple measures of clinical examination, such as CRT,
might guide optimal treatment in circulatory shock.

� Basic hemodynamic monitoring of patients with
circulatory shock involves the placement of an arterial
and central venous catheter, and more advanced
monitors may be indicated in more complex
shock states.

� Advanced hemodynamic monitors should be selected
based on their ability to correctly measure CO and
measure other clinically applicable
hemodynamic variables.

� The application of advanced hemodynamic monitors in
patients with circulatory shock does not automatically
imply that patients will have improved outcomes.

Cardiopulmonary monitoring
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multivariable analyses and diagnostic accuracy tests
[11

&&

]. Clinical examination remains the first step to
estimate CO in critically ill patients, but additional
measurements are necessary to estimate CO accu-
rately and fully evaluate circulatory shock [12].
Clinical examination can also be used to estimate
a patient’s prognosis. The prognostic value of a
model including systolic blood pressure, respiratory
rate, central temperature, altered consciousness,
and decreased urinary output obtained during the
first 24 h of admission was equal to that of contem-
porary models, such as the Simplified Acute Physi-
ology Score II (SAPS-II) or the Acute Physiology and
Chronic Health Evaluation IV (APACHE-IV) [13]. For
patients with sepsis and septic shock, the mottling
score had a high prognostic value for 14-day mor-
tality, irrespective of the infusion of vasopressors or
other perfusion-related variables [14

&

].
In the ANDROMEDA-SHOCK trial, a resuscita-

tion strategy targeting CRT or lactate for the reduc-
tion of mortality was employed in patients with
septic shock [15

&&

]. Although the primary endpoint,
a 15% absolute reduction in 28-day mortality
between the two groups, was not achieved, trials
such as this one show that targeting perfusion var-
iables to reduce mortality and morbidity in septic
shock is feasible [15

&&

]. Secondary analysis of the
ANDROMEDA-SHOCK trial using Bayesian methods
showed that the CRT-guided resuscitation may
result in lower mortality and morbidity when com-
pared with the lactate-targeted strategy based on
prior probability distribution [16].

It is necessary to improve the hemodynamic
assessment made with clinical examination.
Although advanced hemodynamic tools are becom-
ing more widely available, further research into the
value of clinical examination may potentially limit
inappropriate overuse of advanced monitoring tech-
niques [4]. On the other hand, new tools can also
help improve the clinical examination. For exam-
ple, a device has been developed to objectively
measure CRT in an attempt to help standardize this
clinical measurement [17,18]. Before these novel
devices can be implemented, the obtained values
need to be compared with the contemporary
method of CRT measurement as used in the
ANDROMEDA-SHOCK trial [15

&&

]

BASIC HEMODYNAMIC MONITORING
USING AN ARTERIAL CATHETER AND A
CENTRAL VENOUS CATHETER

An initial mean arterial pressure (MAP) of 65 mmHg
is the lower limit to target perfusion pressure in all
shock states except for hypovolemic shock [1], and
this value has been chosen as research has shown

that a MAP below this value is associated with
complications and increased mortality [19,20].
Placement of an arterial catheter is the clinical stan-
dard for blood pressure measurements as it allows
reliable and continuous measurements. Accurate
measurements are not self-evident, as care has to
be taken with the position of the pressure transducer
and correct zero adjustment [21]. Artifacts of the
signal may be present because of occlusion or com-
pression of the lining, which causes underdamping
or overdamping [21]. Blood pressure measurements
can also be performed using noninvasive alterna-
tives, such as oscillometry, the volume-clamp
method, or applanation tonometry [21]. Although
noninvasive alternatives are sometimes used as the
standard of care, including in patients with circula-
tory shock [22], uncertainty exists regarding the
interchangeability of the obtained results with these
methods compared with those obtained by the arte-
rial catheter [23]. At the moment, the placement of
an arterial catheter is recommended as soon as
possible to obtain reliable blood pressure measure-
ments [1].

An arterial catheter also facilitates the use of
point-of-care blood gas analysis. Several variables
can be assessed using blood gas analysis in suspected
circulatory shock, and in determining the prognosis
of established shock. Lactate is one of the best-
known biomarkers for estimating the severity and
prognosis of circulatory shock, and is used in the
definition of its diagnosis [2]. The difference of
partial pressures of CO2 in venous and arterial blood
gas (Pv-aCO2 or CO2 gap) is a surrogate marker for the
adequacy of CO and can be used in algorithms for
diagnosis and treatment of circulatory failure [24].
The presence of an elevated Pv-aCO2 (i.e. >6 mmHg)
is associated with a reduced lactate clearance in
patients with septic shock [25]. Also, normalization
of Pv-aCO2 during the treatment of circulatory shock
was associated with a decrease in blood lactate levels
[26].

A central venous catheter is placed in critically
ill patients suspected of circulatory shock to facili-
tate administration of vasoactive medication and
offers continuous monitoring of central venous
pressure (CVP), and if placed in the superior caval
vein (either via the jugular or subclavian vein), it
facilitates the measurements of central venous oxy-
gen saturation (ScvO2). CVP is still the most fre-
quently used variable to guide fluid resuscitation
in critically ill patients [27], while it has been dem-
onstrated that CVP, as a single variable, is unreliable
for this purpose [28]. Many factors influence the
CVP, such as thoracic and abdominal pressures,
which make interpretation of this static variable
difficult [29]. In general, a low value between 0

This is your toolkit in hemodynamic monitoring Kaufmann et al.
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and 5 mmHg is considered normal but there are
many exceptions to this rule [30]. Furthermore, a
significant increase in CVP (i.e. above 12 mmHg) is
suggestive for an increase in right atrial pressure.

Utilizing central venous oxygen saturation
(ScvO2) in patients with circulatory shock has gained
attention since the original early goal-directed ther-
apy trial [31]. A ScvO2 greater than 70% is considered
adequate and was used as a target for hemodynamic
intervention [31]. ScvO2 is a surrogate measurement
for mixed venous oxygen saturation (SvO2). The
measurement of SvO2 requires a PAC, whereas ScvO2

does not. Both measurements give similar informa-
tion on the balance between oxygen delivery and
consumption [32]. Although the absolute values of
SvO2 and ScvO2 are not interchangeable, the trend of
both values can be used similarly for the hemody-
namic management of critically ill patients [33]. The
ScvO2 measurement is done in the superior vena
cava territory, and thus it may be affected by maneu-
vers, such as deeper levels of sedation and emer-
gency intubation, without necessarily implying a
correction in global perfusion [34]. In patients with
septic shock, ScvO2 values combined with the Pv-

aCO2 predict mortality more reliably than ScvO2

alone [35]. An overview of the abovementioned
variables and their definition and value is given in
Table 1.

In our 74-year-old female example patient,
using the clinical examination, we can establish
the diagnosis shock with sepsis as an underlying
cause, and the diagnosis of septic shock seems very
likely. We can consider the prognostic value of the
clinical examination findings to get a basic idea for
clinical decision-making. Of course, in a real-life
scenario, the process of clinical decision-making is
much more extensive, with a modifiable conclusion
using the clinical course of the disease. In this case,
whether a cardiac or pulmonary component is pres-
ent as well has to be established by more advanced
measures aside from clinical examination and labo-
ratory tests. If the hemodynamic instability is pro-
gressive, or unresponsive to initial resuscitation,
advanced hemodynamic monitoring is indicated
or at least an evaluation of CO can be performed
as further diagnostic testing is required [1,3

&&

].

ADVANCED HEMODYNAMIC MONITORING

To determine the optimal applicable method of
advanced hemodynamic monitoring in a certain
clinical scenario, one must take the measurement
performance, the ability to provide continuous
CO measurements, the ability to calibrate according
to a reference technique, and the ability to measure
other hemodynamic variables into account [3

&&

,53].

Noninvasive hemodynamic monitors are not clini-
cally indicated in the ICU yet, and will therefore,
not be discussed here [3

&&

]. An overview of the
advanced hemodynamic monitors is presented in
Table 2.

Critical care echocardiography (CCE) is a branch
of critical care ultrasonography, which is the
umbrella term for the point-of-care application of
ultrasonography in the ICU [71]. Over the last
decade, CCE has gained general acceptance as a
diagnostic tool [54]. The CO measurement perfor-
mance of CCE compared with the clinical reference
PAC has been debated as there is a wide variety in
the quality of research. A systematic review with
meta-analysis demonstrated that the currently
available evidence does not support the inter-
changeability of CCE and PAC derived CO [55].
However, another systematic review with meta-
analysis showed no significant differences and sug-
gested that both techniques may be used inter-
changeably [57]. Recently, a study showed that
CCE derived CO measurements in critically ill
patients with sinus rhythm have high precision
and can be used to guide interventions such as a
fluid challenge [72]. The images required to measure
CO may be unobtainable in up to 30% of critically
ill patients because of suboptimal positioning and
complicating factors, such as a patients’ postsurgical
state (e.g. after sternotomy), presence of emphy-
sema, or the presence of chest tubes [56,73]. Regard-
less of these limitations, the use of CCE to measure
CO in critically ill patients suspected of circulatory
shock is now advocated in the guidelines [1]. CCE
has excellent diagnostic value in critically ill
patients because of the ability to measure various
heart structures and perform different measure-
ments of fluid responsiveness, and therefore, every
new ICU physician should at least be able to perform
basic CCE [54]. Clustering septic shock patients to
increase individual hemodynamic management is
possible using clinical examination combined with
hemodynamic variables measured by CCE [74]. A
more advanced measurement, the global longitudi-
nal strain is a prognostic marker of left ventricular
function, and worse values are associated with
higher mortality in patients with septic shock
[75]. More extensive skills in CCE are required to
perform the advanced measurements, and there-
fore, these values may be even more difficult to
obtain in critically ill patients.

Pulse contour analysis allows estimation of CO
based on the principle that aortic pulse pressure is
proportional to stroke volume (SV) and inversely
proportional to aortic compliance [76]. Uncalibrated
pulse contour analysis monitors estimate the CO
from arterial pressure waveform characteristics and

Cardiopulmonary monitoring
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biometric data. Different derivations of hemody-
namic variables obtained using arterial pressure
and arterial compliance are used, and CO is deter-
mined based on sex, age, weight, and height [77].
Some pulse contour analysis monitors can be cali-
brated with an independent measurement of CO
done by transpulmonary thermodilution. Calibra-
tion is done with the injection of a fluid bolus, and
placement of a central venous catheter and a femoral
arterial catheter are required to do so [78]. A system-
atic review with meta-analysis has shown that the CO
measurement performance of uncalibrated pulse
contour analysis monitors was adequate compared
with PAC under normal and hypodynamic condi-
tions, but not in hyperdynamic conditions (e.g. sep-
tic shock) [61]. Therefore, uncalibrated pulse contour
analysis monitors are not suitable for continuous CO
measurements in patients suspected of circulatory
shock, but can be used in other clinical scenarios
in the ICU where assessing trends in CO and fluid
responsiveness is indicated.

The Esophageal Doppler Monitor (EDM) probe
can only be used in sedated patients or patients
under general anesthesia as it is placed in the
patient’s esophagus. EDM uses Doppler ultrasound
to measure the velocity of blood flow in the
descending aorta. The blood flow in the descending
aorta is correlated to CO, under the assumption that
the proportion of blood flow to the upper and lower
part of the body remains equal. A systematic review
with meta-analysis has shown that the CO measure-
ment performance of EDM compared with PAC was
adequate [79]. Yet, the probe can be displaced easily,
which may limit proper CO measurements and
makes the technique more suitable for patients in
the operating room [53].

Transpulmonary thermodilution consists of the
injection of a cold fluid bolus into the superior vena
cava and measuring the subsequent temperature dif-
ference in the femoral artery [80]. The method allows
measurement and calculation of additional hemody-
namic variables, such as extravascular lung water
(EVLW), pulmonary vascular permeability index
(PVPI), and global end-diastolic volume (GEDV)
[78]. A review with meta-analysis has shown good
measurement performance for transpulmonary ther-
modilution compared with the PAC [67]. Continu-
ous, reliable CO measurements, in combination with
the additional hemodynamic variables, make the
method suitable for monitoring in critically ill
patients with a specific indication in acute respiratory
distress syndrome (ARDS) [81]. EVLW and the PVPI
are independent prognostic factors of mortality in
patients with ARDS, which makes monitoring of
these variables particularly valuable [82].

The PAC is able to measure additional hemody-
namic variables in addition to CO, such as right
atrial pressure (RAP) and pulmonary artery pressure
(PAP), which make it a valuable tool in the hemo-
dynamic assessment of critically ill patients sus-
pected of circulatory shock with additional right
ventricular dysfunction or pulmonary hyperten-
sion. The intermittent thermodilution with the
PAC is considered the gold standard for clinical
CO measurements in critically ill patients. CO
measurements are provided using the Stewart–
Hamilton equation after injection of a cold bolus
of fluid (i.e. the indicator) [67]. Obtaining CO meas-
urements can be limited by factors related to the
injection of the indicator (e.g. loss of indicator,
temperature differences) or patient-specific factors
(e.g. intracardiac shunts, tricuspid regurgitation,
low-flow states) [67]. A systematic review with
meta-analysis found an adequate CO measurement
performance of the PAC compared with experimen-
tal reference measurements (i.e. flow probes) [70].
Furthermore, the PAC is the only hemodynamic
monitor capable of continuously monitoring the
right ventricle, which makes it the monitor of
choice in patients with right heart failure, and
which allows assessment of the ventilator settings’
impact on right ventricular function [83]. Patients
with cardiogenic shock can be managed with a PAC,
but the use of the PAC was not associated with
improved outcome [84].

HOW TO COMBINE THESE TOOLS?

Now that we have the evidence for all individual
monitoring tools, let us consider how to combine
the measurements in such a manner that we get
informed on the underlying cause, the right trigger
for intervention, the appropriate hemodynamic tar-
get, and the patient’s prognosis.

Our example patient deteriorated and had to be
mechanically ventilated as a consequence of
exhaustion. Mottling on the knees increased after
initial resuscitation, higher ventilation pressures
were needed over time, and lactate levels remained
elevated. An increasing dose of vasopressors had to
be administered. CCE was performed and showed
no significant cardiac comorbidities except minor
tricuspid regurgitation. Additionally, a low CO was
recognized combined with signs of fluid responsive-
ness. An arterial thermistor catheter was placed in
the femoral artery, which allowed continuous CO
measurements using the transpulmonary thermodi-
lution technique. The decision for this monitoring
technique was made because of the potential for the
occurrence of ARDS [81].

This is your toolkit in hemodynamic monitoring Kaufmann et al.
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FUTURE DEVELOPMENTS

Improvements need to be made on all aspects of
hemodynamic monitoring to provide the best care
for critically ill patients suspected of circulatory
shock. Future developments in this field include
improving the clinical examination and demon-
strating improved patient outcomes by targeting
hemodynamic variables using advanced hemody-
namic monitoring.

Education to improve the clinical examination
by physicians should identify some of the cognitive
biases physicians may be subjected to, and teach
physicians to negate them [85]. Physicians may be
prone to confirmation bias in which they refrain
from considering diverging information not sup-
porting their decision. For example, a physician
may examine a critically ill patient who is receiving
a high dose of norepinephrine infusion, and may
believe that the presence of this drug must imply
that CO is low. An observational study demon-
strated that a crude insight into the thought process
behind the estimation of cardiac function by physi-
cians using clinical examination is possible using
Bayesian networks [86

&

]. The physician can be made
aware of their thinking process and can be trained
to use or leave out specific values obtained with
the clinical examination, or the physician can be
trained to reconsider their conclusion when new
information is presented. Additionally, machine
learning algorithms are increasingly applied in stud-
ies to diagnose and predict outcomes of circulatory
shock [87]. These types of techniques may be
applied to improve the clinical examination as a
first step for the evaluation of circulatory shock.

The application of hemodynamic monitors in
patients with circulatory shock does not automati-
cally imply that patients will have improved out-
comes. For instance, the extensive use of the PAC in
the past did not show a benefit on outcomes in
critically ill patients [69]. Although CCE is consid-
ered to be one of the first additional steps after
clinical examination and its diagnostic capabilities
are well demonstrated, there is no evidence of a
beneficial effect of CCE on patient outcomes as of
yet [88]. Patient outcomes can only be improved if
monitoring and diagnosis are coupled with success-
ful therapeutic interventions. Recently, a random-
ized trial was published, which assessed the effect of
continuous hemodynamic monitoring of patients
with shock using transesophageal echocardiography
[89

&&

]. Although hemodynamic instability resolved
sooner within the first 72 h of resuscitation using
continuous monitoring, no beneficial effect was
found on mortality or the overall resolution of
hemodynamic instability [89

&&

].

In the near future, the hemodynamic variables
obtained with the clinical examination and with
more advanced measurements to guide decision-
making in circulatory shock can be optimally
selected and combined using machine learning
and logistic regression models [90].

CONCLUSION

Decision-making in patients suspected of circula-
tory shock is intricate, and numerous tools are avail-
able to guide this process. The clinical examination
combined with basic hemodynamic monitoring
tools is the first step, but more advanced monitoring
tools are often necessary to provide the best care.
Future developments are focused on improving the
clinical examination and demonstrating improved
patient outcomes using targeted variables by
advanced hemodynamic monitoring.
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