16 research outputs found

    Morphological characterization of the blood cells in the endangered Sicilian endemic pond turtle,Emys trinacris(Testudines: Emydidae)

    Get PDF
    In this study, measurements of morphological parameters, sizes and frequencies of peripheral blood cells (erythrocytes, leukocytes, thrombocytes) on blood smear preparation devices stained with May-Grünwald stain were evaluated for both sexes in 20 Emys trinacris (Testudines: Emydidae) specimens. Erythrocytes were higher in male than in female specimens. The leukocyte of E. trinacris contains eosinophil, basophil, monocyte, heterophil and lymphocyte. The eosinophil was higher in males than in females whereas lymphocytes were higher in females than in males. The erythrocyte morphological parameters (EL [erythrocyte length], EW [erythrocyte width], L/W [length/width], ES [erythrocyte size]) were compared with the same data from Emys orbicularis s.l, and from species belonging to other chelonian genera. The erythrocyte size did not vary within the studied Palearctic Emys taxa, whereas it proved to differ from that observed in other chelonians

    Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    Get PDF
    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella

    Free-Living Turtles Are a Reservoir for Salmonella but Not for Campylobacter

    Get PDF
    Different studies have reported the prevalence of Salmonella in turtles and its role in reptile-associated salmonellosis in humans, but there is a lack of scientific literature related with the epidemiology of Campylobacter in turtles. The aim of this study was to evaluate the prevalence of Campylobacter and Salmonella in free-living native (Emys orbicularis, n=83) and exotic (Trachemys scripta elegans, n=117) turtles from 11 natural ponds in Eastern Spain. In addition, different types of samples (cloacal swabs, intestinal content and water from Turtle containers) were compared. Regardless of the turtle species, natural ponds where individuals were captured and the type of sample taken, Campylobacter was not detected. Salmonella was isolated in similar proportions in native (8.0±3.1%) and exotic (15.0±3.3%) turtles (p=0.189). The prevalence of Salmonella positive turtles was associated with the natural ponds where animals were captured. Captured turtles from 8 of the 11 natural ponds were positive, ranged between 3.0±3.1% and 60.0±11.0%. Serotyping revealed 8 different serovars among four Salmonella enterica subspecies: S. enterica subsp. enterica (n = 21), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 3), and S. enterica subsp. houtenae (n = 1). Two serovars were predominant: S. Thompson (n=16) and S. typhimurium (n=3). In addition, there was an effect of sample type on Salmonella detection. The highest isolation of Salmonella was obtained from intestinal content samples (12.0±3.0%), while lower percentages were found for water from the containers and cloacal swabs (8.0±2.5% and 3.0±1.5%, respectively). Our results imply that free-living turtles are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out turtles as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results.This work was supported by the Conselleria de Infraestructura, Territorio y Medio Ambiente for their assistance and financial support (Life09-Trachemys, Resolution 28/02/12 CITMA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Marín, C.; Ingresa-Capaccioni, S.; González Bodí, S.; Marco Jiménez, F.; Vega Garcia, S. (2013). Free-Living Turtles Are a Reservoir for Salmonella but Not for Campylobacter. PLoS ONE. 8(8):1-6. https://doi.org/10.1371/journal.pone.0072350S1688(2012). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food‐borne Outbreaks in 2010. EFSA Journal, 10(3). doi:10.2903/j.efsa.2012.2597Kapperud, G. (2003). Factors Associated with Increased and Decreased Risk of Campylobacter Infection: A Prospective Case-Control Study in Norway. American Journal of Epidemiology, 158(3), 234-242. doi:10.1093/aje/kwg139Mermin, J., Hutwagner, L., Vugia, D., Shallow, S., Daily, P., … Bender, J. (2004). Reptiles, Amphibians, and HumanSalmonellaInfection: A Population‐Based, Case‐Control Study. Clinical Infectious Diseases, 38(s3), S253-S261. doi:10.1086/381594De Jong, B., Andersson, Y., & Ekdahl, K. (2005). Effect of Regulation and Education on Reptile-associated Salmonellosis. Emerging Infectious Diseases, 11(3), 398-403. doi:10.3201/eid1103.040694NAKADAI, A., KUROKI, T., KATO, Y., SUZUKI, R., YAMAI, S., YAGINUMA, C., … HAYASHIDANI, H. (2005). Prevalence of Salmonella spp. in Pet Reptiles in Japan. Journal of Veterinary Medical Science, 67(1), 97-101. doi:10.1292/jvms.67.97Lafuente, S., Bellido, J. B., Moraga, F. A., Herrera, S., Yagüe, A., Montalvo, T., … Caylà, J. A. (2013). Salmonella paratyphi B and Salmonella litchfield outbreaks associated with pet turtle exposure in Spain. Enfermedades Infecciosas y Microbiología Clínica, 31(1), 32-35. doi:10.1016/j.eimc.2012.05.013Van PELT, W., de WIT, M. A. S., WANNET, W. J. B., LIGTVOET, E. J. J., WIDDOWSON, M. A., & van DUYNHOVEN, Y. T. H. P. (2003). Laboratory surveillance of bacterial gastroenteric pathogens in The Netherlands, 1991–2001. Epidemiology and Infection, 130(3), 431-441. doi:10.1017/s0950268803008392Havelaar, A. H., Haagsma, J. A., Mangen, M.-J. J., Kemmeren, J. M., Verhoef, L. P. B., Vijgen, S. M. C., … van Pelt, W. (2012). Disease burden of foodborne pathogens in the Netherlands, 2009. International Journal of Food Microbiology, 156(3), 231-238. doi:10.1016/j.ijfoodmicro.2012.03.029DOORDUYN, Y., VAN PELT, W., SIEZEN, C. L. E., VAN DER HORST, F., VAN DUYNHOVEN, Y. T. H. P., HOEBEE, B., & JANSSEN, R. (2007). Novel insight in the association between salmonellosis or campylobacteriosis and chronic illness, and the role of host genetics in susceptibility to these diseases. Epidemiology and Infection, 136(9), 1225-1234. doi:10.1017/s095026880700996xHAAGSMA, J. A., SIERSEMA, P. D., DE WIT, N. J., & HAVELAAR, A. H. (2010). Disease burden of post-infectious irritable bowel syndrome in The Netherlands. Epidemiology and Infection, 138(11), 1650-1656. doi:10.1017/s0950268810000531Allos, B. M., & Blaser, M. J. (1995). Campylobacter jejuni and the Expanding Spectrum of Related Infections. Clinical Infectious Diseases, 20(5), 1092-1101. doi:10.1093/clinids/20.5.1092Friedman, C. R., Hoekstra, R. M., Samuel, M., Marcus, R., Bender, J., … Shiferaw, B. (2004). Risk Factors for SporadicCampylobacterInfection in the United States: A Case‐Control Study in FoodNet Sites. Clinical Infectious Diseases, 38(s3), S285-S296. doi:10.1086/381598STUDAHL, A., & ANDERSSON, Y. (2000). Risk factors for indigenous campylobacter infection: a Swedish case-control study. Epidemiology and Infection, 125(2), 269-275. doi:10.1017/s0950268899004562NEIMANN, J., ENGBERG, J., MØLBAK, K., & WEGENER, H. C. (2003). A case–control study of risk factors for sporadic campylobacter infections in Denmark. Epidemiology and Infection, 130(3), 353-366. doi:10.1017/s0950268803008355DOORDUYN, Y., VAN DEN BRANDHOF, W. E., VAN DUYNHOVEN, Y. T. H. P., BREUKINK, B. J., WAGENAAR, J. A., & VAN PELT, W. (2010). Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study. Epidemiology and Infection, 138(10), 1391-1404. doi:10.1017/s095026881000052xSchroter, M., Roggentin, P., Hofmann, J., Speicher, A., Laufs, R., & Mack, D. (2004). Pet Snakes as a Reservoir for Salmonella enterica subsp. diarizonae (Serogroup IIIb): a Prospective Study. Applied and Environmental Microbiology, 70(1), 613-615. doi:10.1128/aem.70.1.613-615.2004Van Meervenne, E., Botteldoorn, N., Lokietek, S., Vatlet, M., Cupa, A., Naranjo, M., … Bertrand, S. (2009). Turtle-associated Salmonella septicaemia and meningitis in a 2-month-old baby. Journal of Medical Microbiology, 58(10), 1379-1381. doi:10.1099/jmm.0.012146-0Williams, L. P. (1965). Pet Turtles as a Cause of Human Salmonellosis. JAMA: The Journal of the American Medical Association, 192(5), 347. doi:10.1001/jama.1965.03080180005001Feeley, J. C., & Treger, M. D. (1969). Penetration of Turtle Eggs by Salmonella braenderup. Public Health Reports (1896-1970), 84(2), 156. doi:10.2307/4593527Mermin, J., Hoar, B., & Angulo, F. J. (1997). Iguanas and Salmonella Marina Infection in Children: A Reflection of the Increasing Incidence of Reptile-associated Salmonellosis in the United States. PEDIATRICS, 99(3), 399-402. doi:10.1542/peds.99.3.399Rodgers, G. L., Long, S. S., Smergel, E., & Dampier, C. (2002). Salmonella Infection Associated With a Pet Lizard in Siblings With Sickle Cell Anemia: An Avoidable Risk. Journal of Pediatric Hematology/Oncology, 24(1), 75-76. doi:10.1097/00043426-200201000-00020Tu, Z.-C., Zeitlin, G., Gagner, J.-P., Keo, T., Hanna, B. A., & Blaser, M. J. (2004). Campylobacter fetus of Reptile Origin as a Human Pathogen. Journal of Clinical Microbiology, 42(9), 4405-4407. doi:10.1128/jcm.42.9.4405-4407.2004Hidalgo-Vila, J., Díaz-Paniagua, C., Pérez-Santigosa, N., de Frutos-Escobar, C., & Herrero-Herrero, A. (2008). Salmonella in free-living exotic and native turtles and in pet exotic turtles from SW Spain. Research in Veterinary Science, 85(3), 449-452. doi:10.1016/j.rvsc.2008.01.011Harris, J. R., Neil, K. P., Behravesh, C. B., Sotir, M. J., & Angulo, F. J. (2010). Recent Multistate Outbreaks of HumanSalmonellaInfections Acquired from Turtles: A Continuing Public Health Challenge. Clinical Infectious Diseases, 50(4), 554-559. doi:10.1086/649932Geue, L., & Löschner, U. (2002). Salmonella enterica in reptiles of German and Austrian origin. Veterinary Microbiology, 84(1-2), 79-91. doi:10.1016/s0378-1135(01)00437-0Sánchez-Jiménez, M. M., Rincón-Ruiz, P. A., Duque, S., Giraldo, M. A., Ramírez-Monroy, D. M., Jaramillo, G., & Cardona-Castro, N. (2011). Salmonella enterica in semi-aquatic turtles in Colombia. The Journal of Infection in Developing Countries, 5(05), 361-364. doi:10.3855/jidc.1126HEALTH SURVEY OF WILD AND CAPTIVE BOG TURTLES (CLEMMYS MUHLENBERGII) IN NORTH CAROLINA AND VIRGINIA. (2002). Journal of Zoo and Wildlife Medicine, 33(4), 311-316. doi:10.1638/1042-7260(2002)033[0311:hsowac]2.0.co;2Richards, J. M., Brown, J. D., Kelly, T. R., Fountain, A. L., & Sleeman, J. M. (2004). ABSENCE OF DETECTABLE SALMONELLA CLOACAL SHEDDING IN FREE-LIVING REPTILES ON ADMISSION TO THE WILDLIFE CENTER OF VIRGINIA. Journal of Zoo and Wildlife Medicine, 35(4), 562-563. doi:10.1638/03-070Hidalgo-Vila, J., Díaz-Paniagua, C., de Frutos-Escobar, C., Jiménez-Martínez, C., & Pérez-Santigosa, N. (2007). Salmonella in free living terrestrial and aquatic turtles. Veterinary Microbiology, 119(2-4), 311-315. doi:10.1016/j.vetmic.2006.08.012Acheson, D., & Allos, B. M. (2001). Campylobacter jejuni Infections: Update on Emerging Issues and Trends. Clinical Infectious Diseases, 32(8), 1201-1206. doi:10.1086/319760Briones, V., Tellez, S., Goyache, J., Ballesteros, C., del Pilar Lanzarot, M., Dominguez, L., & Fernandez-Garayzabal, J. F. (2004). Salmonella diversity associated with wild reptiles and amphibians in Spain. Environmental Microbiology, 6(8), 868-871. doi:10.1111/j.1462-2920.2004.00631.xMan, S. M. (2011). The clinical importance of emerging Campylobacter species. Nature Reviews Gastroenterology & Hepatology, 8(12), 669-685. doi:10.1038/nrgastro.2011.191Ugarte-Ruiz, M., Gómez-Barrero, S., Porrero, M. C., Álvarez, J., García, M., Comerón, M. C., … Domínguez, L. (2012). Evaluation of four protocols for the detection and isolation of thermophilic Campylobacter from different matrices. Journal of Applied Microbiology, 113(1), 200-208. doi:10.1111/j.1365-2672.2012.05323.xJeffrey, J. S., Tonooka, K. H., & Lozanot, J. (2001). Prevalence of Campylobacter spp. from Skin, Crop, and Intestine of Commercial Broiler Chicken Carcasses at Processing. Poultry Science, 80(9), 1390-1392. doi:10.1093/ps/80.9.1390Perko-Mäkelä, P., Isohanni, P., Katzav, M., Lund, M., Hänninen, M.-L., & Lyhs, U. (2009). A longitudinal study of Campylobacter distribution in a turkey production chain. Acta Veterinaria Scandinavica, 51(1). doi:10.1186/1751-0147-51-18Saelinger, C. A., Lewbart, G. A., Christian, L. S., & Lemons, C. L. (2006). Prevalence ofSalmonellaspp in cloacal, fecal, and gastrointestinal mucosal samples from wild North American turtles. Journal of the American Veterinary Medical Association, 229(2), 266-268. doi:10.2460/javma.229.2.266Chambers, D. L., & Hulse, A. C. (2006). Salmonella Serovars in the Herpetofauna of Indiana County, Pennsylvania. Applied and Environmental Microbiology, 72(5), 3771-3773. doi:10.1128/aem.72.5.3771-3773.2006Gaertner, J. P., Hahn, D., Jackson, J., Forstner, M. R. J., & Rose, F. L. (2008). Detection of Salmonellae in Captive and Free-Ranging Turtles Using Enrichment Culture and Polymerase Chain Reaction. Journal of Herpetology, 42(2), 223-231. doi:10.1670/07-1731.1Magnino, S., Colin, P., Dei-Cas, E., Madsen, M., McLauchlin, J., Nöckler, K., … Van Peteghem, C. (2009). Biological risks associated with consumption of reptile products. International Journal of Food Microbiology, 134(3), 163-175. doi:10.1016/j.ijfoodmicro.2009.07.001XIA, X., ZHAO, S., SMITH, A., MCEVOY, J., MENG, J., & BHAGWAT, A. (2009). Characterization of Salmonella isolates from retail foods based on serotyping, pulse field gel electrophoresis, antibiotic resistance and other phenotypic properties. International Journal of Food Microbiology, 129(1), 93-98. doi:10.1016/j.ijfoodmicro.2008.11.007Franco, A., Hendriksen, R. S., Lorenzetti, S., Onorati, R., Gentile, G., Dell’Omo, G., … Battisti, A. (2011). Characterization of Salmonella Occurring at High Prevalence in a Population of the Land Iguana Conolophus subcristatus in Galápagos Islands, Ecuador. PLoS ONE, 6(8), e23147. doi:10.1371/journal.pone.0023147Scheelings, T. F., Lightfoot, D., & Holz, P. (2011). PREVALENCE OF SALMONELLA IN AUSTRALIAN REPTILES. Journal of Wildlife Diseases, 47(1), 1-11. doi:10.7589/0090-3558-47.1.1Pasmans, F., Blahak, S., Martel, A., & Pantchev, N. (2008). Introducing reptiles into a captive collection: The role of the veterinarian. The Veterinary Journal, 175(1), 53-68. doi:10.1016/j.tvjl.2006.12.009Strohl, P., Tilly, B., Fremy, S., Brisabois, A., & Guerin-Faublee, V. (2004). Prevalence of Salmonella shedding in faeces by captive chelonians. Veterinary Record, 154(2), 56-58. doi:10.1136/vr.154.2.5

    Cryptosporidium cf. avium in an inland-bearded dragon (Pogona vitticeps) - A case report and review of the literature

    Get PDF
    Here, we report the first case of Cryptosporidium cf. avium from an inland bearded dragon (Pogona vitticeps) from a wildlife sanctuary in Victoria, Australia. Molecular characterisation was conducted by PCR-coupled sequencing of regions in the small subunit of nuclear RNA (SSU), actin and large subunit of nuclear RNA (LSU) genes. The sequences obtained grouped with those of C. ornithophilus and other C. avium genotypes/variants originating from reptiles or birds. We discuss this case in relation to the current state of knowledge of C. avium of birds and reptiles, considering provenance and environment (agricultural, pet industry, wildlife, zoo or wildlife park) as well as clinical context, and pathological changes associated with cryptosporidiosis in these host animals

    Intravenous Alfaxalone and Propofol Anesthesia in the Bearded Dragon (Pogona vitticeps)

    No full text
    corecore