164 research outputs found

    Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes

    Get PDF
    BACKGROUND: RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes. RESULTS: Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality. CONCLUSIONS: The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control

    Expression of neurogenin3 reveals an islet cell precursor population in the pancreas

    Get PDF
    Differentiation of early gut endoderm cells into the endocrine cells forming the pancreatic islets of Langerhans depends on a cascade of gene activation events controlled by transcription factors including the basic helix-loop-helix (bHLH) proteins. To delineate this cascade, we began by establishing the position of neurogenin3, a bHLH factor found in the pancreas during fetal development. We detect neurogenin3 immunoreactivity transiently in scattered ductal cells in the fetal mouse pancreas, peaking at embryonic day 15.5. Although not detected in cells expressing islet hormones or the islet transcription factors Isl1, Brn4, Pax6 or PDX1, neurogenin3 is detected along with early islet differentiation factors Nkx6.1 and Nkx2.2, establishing that it is expressed in immature cells in the islet lineage. Analysis of transcription factor-deficient mice demonstrates that neurogenin3 expression is not dependent on neuroD1/BETA2, Mash1, Nkx2.2, Nkx6.1, or Pax6. Furthermore, early expression of neurogenin3 under control of the Pdx1 promoter is alone sufficient to drive early and ectopic differentiation of islet cells, a capability shared by the pancreatic bHLH factor, neuroD1/BETA2, but not by the muscle bHLH factor, MyoD. However, the islet cells produced in these transgenic experiments are overwhelmingly α cells, suggesting that factors other than the bHLH factors are required to deviate from a default α cell fate. These data support a model in which neurogenin3 acts upstream of other islet differentiation factors, initiating the differentiation of endocrine cells, but switching off prior to final differentiation. The ability to uniquely identify islet cell precursors by neurogenin3 expression allows us to determine the position of other islet transcription factors in the differentiation cascade and to propose a map for the islet cell differentiation pathway

    On free evolution of self gravitating, spherically symmetric waves

    Get PDF
    We perform a numerical free evolution of a selfgravitating, spherically symmetric scalar field satisfying the wave equation. The evolution equations can be written in a very simple form and are symmetric hyperbolic in Eddington-Finkelstein coordinates. The simplicity of the system allow to display and deal with the typical gauge instability present in these coordinates. The numerical evolution is performed with a standard method of lines fourth order in space and time. The time algorithm is Runge-Kutta while the space discrete derivative is symmetric (non-dissipative). The constraints are preserved under evolution (within numerical errors) and we are able to reproduce several known results.Comment: 15 pages, 15 figure

    Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    Get PDF
    BACKGROUND: Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. METHODS: Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. RESULTS: Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene expression in the developing A. aegypti brain. CONCLUSIONS: These studies revealed sex-specific gene expression profiles in the developing A. aegypti pupal head and identified Doublesex as a key regulator of sexually dimorphic gene expression during mosquito neural development

    High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti

    Get PDF
    BACKGROUND: Despite substantial progress in mosquito genomic and genetic research, few cis-regulatory elements (CREs), DNA sequences that control gene expression, have been identified in mosquitoes or other non-model insects. Formaldehyde-assisted isolation of regulatory elements paired with DNA sequencing, FAIRE-seq, is emerging as a powerful new high-throughput tool for global CRE discovery. FAIRE results in the preferential recovery of open chromatin DNA fragments that are not bound by nucleosomes, an evolutionarily conserved indicator of regulatory activity, which are then sequenced. Despite the power of the approach, FAIRE-seq has not yet been applied to the study of non-model insects. In this investigation, we utilized FAIRE-seq to profile open chromatin and identify likely regulatory elements throughout the genome of the human disease vector mosquito Aedes aegypti. We then assessed genetic variation in the regulatory elements of dengue virus susceptible (Moyo-S) and refractory (Moyo-R) mosquito strains. RESULTS: Analysis of sequence data obtained through next generation sequencing of FAIRE DNA isolated from A. aegypti embryos revealed >121,000 FAIRE peaks (FPs), many of which clustered in the 1 kb 5' upstream flanking regions of genes known to be expressed at this stage. As expected, known transcription factor consensus binding sites were enriched in the FPs, and of these FoxA1, Hunchback, Gfi, Klf4, MYB/ph3 and Sox9 are most predominant. All of the elements tested in vivo were confirmed to drive gene expression in transgenic Drosophila reporter assays. Of the >13,000 single nucleotide polymorphisms (SNPs) recently identified in dengue virus-susceptible and refractory mosquito strains, 3365 were found to map to FPs. CONCLUSION: FAIRE-seq analysis of open chromatin in A. aegypti permitted genome-wide discovery of CREs. The results of this investigation indicate that FAIRE-seq is a powerful tool for identification of regulatory DNA in the genomes of non-model organisms, including human disease vector mosquitoes

    Requirement for commissureless2 function during dipteran insect nerve cord development

    Get PDF
    BACKGROUND: In Drosophila melanogaster, commissureless (comm) function is required for proper nerve cord development. Although comm orthologs have not been identified outside of Drosophila species, some insects possess orthologs of Drosophila comm2, which may also regulate embryonic nerve cord development. Here, this hypothesis is explored through characterization of comm2 genes in two disease vector mosquitoes. RESULTS: Culex quinquefasciatus (West Nile and lymphatic filiariasis vector) has three comm2 genes that are expressed in the developing nerve cord. Aedes aegypti (dengue and yellow fever vector) has a single comm2 gene that is expressed in commissural neurons projecting axons toward the midline. Loss of comm2 function in both A. aegypti and D. melanogaster was found to result in loss of commissure defects that phenocopy the frazzled (fra) loss of function phenotypes observed in both species. Loss of fra function in either insect was found to result in decreased comm2 transcript levels during nerve cord development. CONCLUSIONS: The results of this investigation suggest that Fra down-regulates repulsion in precrossing commissural axons by regulating comm2 levels in both A. aegypti and D. melanogaster, both of which require Comm2 function for proper nerve cord development

    Frame-Dragging Vortexes and Tidal Tendexes Attached to Colliding Black Holes: Visualizing the Curvature of Spacetime

    Get PDF
    When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor) gets split into an "electric" part E_{jk} that describes tidal gravity and a "magnetic" part B_{jk} that describes differential dragging of inertial frames. We introduce tools for visualizing B_{jk} (frame-drag vortex lines, their vorticity, and vortexes) and E_{jk} (tidal tendex lines, their tendicity, and tendexes), and also visualizations of a black-hole horizon's (scalar) vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics of curved spacetime in merging black-hole binaries.Comment: 4 pages, 5 figure

    Momentum flow in black-hole binaries: II. Numerical simulations of equal-mass, head-on mergers with antiparallel spins

    Get PDF
    Research on extracting science from binary-black-hole (BBH) simulations has often adopted a "scattering matrix" perspective: given the binary's initial parameters, what are the final hole's parameters and the emitted gravitational waveform? In contrast, we are using BBH simulations to explore the nonlinear dynamics of curved spacetime. Focusing on the head-on plunge, merger, and ringdown of a BBH with transverse, antiparallel spins, we explore numerically the momentum flow between the holes and the surrounding spacetime. We use the Landau-Lifshitz field-theory-in-flat-spacetime formulation of general relativity to define and compute the density of field energy and field momentum outside horizons and the energy and momentum contained within horizons, and we define the effective velocity of each apparent and event horizon as the ratio of its enclosed momentum to its enclosed mass-energy. We find surprisingly good agreement between the horizons' effective and coordinate velocities. To investigate the gauge dependence of our results, we compare pseudospectral and moving-puncture evolutions of physically similar initial data; although spectral and puncture simulations use different gauge conditions, we find remarkably good agreement for our results in these two cases. We also compare our simulations with the post-Newtonian trajectories and near-field energy-momentum. [Abstract abbreviated; full abstract also mentions additional results.]Comment: Submitted to Phys. Rev.

    Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes I. General Theory and Weak-Gravity Applications

    Get PDF
    When one splits spacetime into space plus time, the Weyl curvature tensor (vacuum Riemann tensor) gets split into two spatial, symmetric, and trace-free (STF) tensors: (i) the Weyl tensor's so-called "electric" part or tidal field, and (ii) the Weyl tensor's so-called "magnetic" part or frame-drag field. Being STF, the tidal field and frame-drag field each have three orthogonal eigenvector fields which can be depicted by their integral curves. We call the integral curves of the tidal field's eigenvectors tendex lines, we call each tendex line's eigenvalue its tendicity, and we give the name tendex to a collection of tendex lines with large tendicity. The analogous quantities for the frame-drag field are vortex lines, their vorticities, and vortexes. We build up physical intuition into these concepts by applying them to a variety of weak-gravity phenomena: a spinning, gravitating point particle, two such particles side by side, a plane gravitational wave, a point particle with a dynamical current-quadrupole moment or dynamical mass-quadrupole moment, and a slow-motion binary system made of nonspinning point particles. [Abstract is abbreviated; full abstract also mentions additional results.]Comment: 25 pages, 20 figures, matches the published versio
    corecore