8 research outputs found

    Gradient Photonic Materials Based on One‐Dimensional Polymer Photonic Crystals

    Get PDF
    In nature, animals such as chameleons are well‐known for the complex color patterns of their skin and the ability to adapt and change the color by manipulating sophisticated photonic crystal systems. Artificial gradient photonic materials are inspired by these color patterns. A concept for the preparation of such materials and their function as tunable mechanochromic materials is presented in this work. The system consists of a 1D polymer photonic crystal on a centimeter scale on top of an elastic poly(dimethylsiloxane) substrate with a gradient in stiffness. In the unstrained state, this system reveals a uniform red reflectance over the entire sample. Upon deformation, a gradient in local strain of the substrate is formed and transferred to the photonic crystal. Depending on the magnitude of this local strain, the thickness of the photonic crystal decreases continuously, resulting in a position‐dependent blue shift of the reflectance peak and hence the color in a rainbow‐like fashion. Using more sophisticated hard‐soft‐hard‐soft‐hard gradient elastomers enables the realization of stripe‐like reflectance patterns. Thus, this approach allows for the tunable formation of reflectance gradients and complex reflectance patterns. Envisioned applications are in the field of mechanochromic sensors, telemedicine, smart materials, and metamaterials

    Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source

    Get PDF
    International audience: Fuelled by the obesity epidemic, there is considerable interest in the developmental origins of white adipose tissue (WAT) and the stem and progenitor cells from which it arises. Whereas increased visceral fat mass is associated with metabolic dysfunction, increased subcutaneous WAT is protective. There are six visceral fat depots: perirenal, gonadal, epicardial, retroperitoneal, omental and mesenteric, and it is a subject of much debate whether these have a common developmental origin and whether this differs from that for subcutaneous WAT. Here we show that all six visceral WAT depots receive a significant contribution from cells expressing Wt1 late in gestation. Conversely, no subcutaneous WAT or brown adipose tissue arises from Wt1-expressing cells. Postnatally, a subset of visceral WAT continues to arise from Wt1-expressing cells, consistent with the finding that Wt1 marks a proportion of cell populations enriched in WAT progenitors. We show that all visceral fat depots have a mesothelial layer like the visceral organs with which they are associated, and provide several lines of evidence that Wt1-expressing mesothelium can produce adipocytes. These results reveal a major ontogenetic difference between visceral and subcutaneous WAT, and pinpoint the lateral plate mesoderm as a major source of visceral WAT. They also support the notion that visceral WAT progenitors are heterogeneous, and suggest that mesothelium is a source of adipocytes

    Refractive-index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns

    Get PDF
    We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (SylgardÂź 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025∘ results in an error of the refractive index of typically ±5 ⋅ 10−4. Information on the sample thickness is not required

    Hierarchical line-defect patterns in wrinkled surfaces †

    No full text
    We demonstrate a novel approach for controlling the formation of line-defects in wrinkling patterns by introducing step-like changes in the Young's modulus of elastomeric substrates supporting thin, stiff layers. Wrinkles are formed upon treating the poly(dimethylsiloxane) (PDMS) substrates by UV/Ozone (UVO) exposure in a uniaxially stretched state and subsequent relaxation. Line defects such as minutiae known from fingerprints are a typical feature in wrinkling patterns. The position where these defects occur is random for homogenous substrate elasticity and film thickness. However, we show that they can be predetermined by using PDMS substrates consisting of areas with different cross-linking densities. While changing the cross-linking density is well known to influence the wrinkling wavelength, we use this parameter in this study to force defect formation. The defect formation is monitored in situ using light microscopy and the mechanical parameters/film thicknesses are determined using imaging AFM indentation measurements. Thus the observed wrinkle-wavelengths can be compared to theoretical predictions. We study the density and morphology of defects for different changes in elasticity and compare our findings with theoretical considerations based on a generalized Swift-Hohenberg-equation to simply emulate the observed pattern-formation process, finding good agreement. The fact that for suitable changes in elasticity, well-ordered defect patterns are observed is discussed with respect to formation of hierarchical structures for applications in optics and nanotechnology

    Length Control and Block-Type Architectures in Worm-like Micelles with Polyethylene Cores

    No full text
    We present evidence for “living”-like behavior in the crystallization-driven self-assembly of triblock copolymers with crystallizable polyethylene middle blocks into worm-like crystalline-core micelles (CCMs). A new method of seed production is introduced utilizing the selective self-assembly of the triblock copolymers into spherical CCMs in appropriate solvents. Seeded growth of triblock copolymer unimers from these spherical CCMs results in worm-like CCMs with narrow length distributions and mean lengths that depend linearly on the applied unimer-to-seed ratio. Depending on the applied triblock copolymer, polystyrene-<i>block</i>-polyethylene-<i>block</i>-polystyrene (SES) or polystyrene-<i>block</i>-polyethylene-<i>block</i>-poly­(methyl methacrylate) (SEM), well-defined worm-like CCMs with a homogeneous or patch-like corona, respectively, can be produced. In a subsequent step, these worm-like CCMs can be used as seeds for the epitaxial growth of a different polyethylene containing triblock copolymer. In this manner, ABA-type triblock <i>co</i>-micelles containing blocks with a homogeneous polystyrene corona and those with a patch-like polystyrene/poly­(methyl methacrylate) corona were prepared. While the epitaxial growth of SEM unimers from worm-like SES CCMs with a homogeneous corona yields triblock <i>co</i>-micelles almost quantitatively, the addition of SES unimers to patchy SEM wCCMs results in a mixture of ABA- and AB-type block <i>co</i>-micelles together with residual patchy wCCMs. Following reports on self-assembled block-type architectures from polymers containing core-forming polyferrocenylsilane blocks, these structures represent the first extension of the concept to block <i>co</i>-micelles from purely organic block copolymers
    corecore