79 research outputs found

    Efficient Removal of Platelets from Peripheral Blood Progenitor Cell Products Using a Novel Micro-Chip Based Acoustophoretic Platform

    Get PDF
    Excessive collection of platelets is an unwanted side effect in current centrifugation-based peripheral blood progenitor cell (PBPC) apheresis. We investigated a novel microchip-based acoustophoresis technique, utilizing ultrasonic standing wave forces for the removal of platelets from PBPC products. By applying an acoustic standing wave field onto a continuously flowing cell suspension in a micro channel, cells can be separated from the surrounding media depending on their physical properties

    Human Embryonic Stem Cell-Derived Mesenchymal Stroma Cells (hES-MSCs) Engraft In Vivo and Support Hematopoiesis without Suppressing Immune Function: Implications for Off-The Shelf ES-MSC Therapies.

    Get PDF
    Mesenchymal stroma cells (MSCs) have a high potential for novel cell therapy approaches in clinical transplantation. Commonly used bone marrow-derived MSCs (BM-MSCs), however, have a restricted proliferative capacity and cultures are difficult to standardize. Recently developed human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) might represent an alternative and unlimited source of hMSCs. We therefore compared human ES-cell-derived MSCs (hES-MP002.5 cells) to normal human bone marrow-derived MSCs (BM-MSCs). hES-MP002.5 cells had lower yet reasonable CFU-F capacity compared with BM-MSC (8±3 versus 29±13 CFU-F per 100 cells). Both cell types showed similar immunophenotypic properties, i.e. cells were positive for CD105, CD73, CD166, HLA-ABC, CD44, CD146, CD90, and negative for CD45, CD34, CD14, CD31, CD117, CD19, CD 271, SSEA-4 and HLA-DR. hES-MP002.5 cells, like BM-MSCs, could be differentiated into adipocytes, osteoblasts and chondrocytes in vitro. Neither hES-MP002.5 cells nor BM-MSCs homed to the bone marrow of immune-deficient NSG mice following intravenous transplantation, whereas intra-femoral transplantation into NSG mice resulted in engraftment for both cell types. In vitro long-term culture-initiating cell assays and in vivo co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP002.5 cells, like BM-MSCs, possess potent stroma support function. In contrast to BM-MSCs, however, hES-MP002.5 cells showed no or only little activity in mixed lymphocyte cultures and phytohemagglutinin (PHA) lymphocyte stimulation assays. In summary, ES-cell derived MSCs might be an attractive unlimited source for stroma transplantation approaches without suppressing immune function

    Toward Brain Tumor Gene Therapy Using Multipotent Mesenchymal Stromal Cell Vectors.

    Get PDF
    Gene therapy of solid cancers has been severely restricted by the limited distribution of vectors within tumors. However, cellular vectors have emerged as an effective migratory system for gene delivery to invasive cancers. Implanted and injected multipotent mesenchymal stromal cells (MSCs) have shown tropism for several types of primary tumors and metastases. This capacity of MSCs forms the basis for their use as a gene vector system in neoplasms. Here, we review the tumor-directed migratory potential of MSCs, mechanisms of the migration, and the choice of therapeutic transgenes, with a focus on malignant gliomas as a model system for invasive and highly vascularized tumors. We examine recent findings demonstrating that MSCs share many characteristics with pericytes and that implanted MSCs localize primarily to perivascular niches within tumors, which might have therapeutic implications. The use of MSC vectors in cancer gene therapy raises concerns, however, including a possible MSC contribution to tumor stroma and vasculature, MSC-mediated antitumor immune suppression, and the potential malignant transformation of cultured MSCs. Nonetheless, we highlight the novel prospects of MSC-based tumor therapy, which appears to be a promising approach

    Mesenchymal Stem Cells

    No full text

    High performance multiplex acoustophoresis for WBC subpopulation isolation

    No full text
    Recently, acoustophoresis has been used to fractionate white blood cells (WBC) into subpopulations, Grenvall et al. [1]. However, at a sample throughput of 8-10 μl/min the separation has limited bioanalytical application. In order to substantially increase throughput, we have redesigned and developed a new separation system that enables unmatched WBC separation performance at a volume throughput of 200μl/min and a cell concentration of 106 cells/ml
    • …
    corecore