4,121 research outputs found

    Tau neutrinos from muon storage rings

    Get PDF
    Charged tau leptons emerging in a long baseline experiment with a muon storage ring and a far-away detector will positively establish neutrino oscillations. We study the conversion of νμ\nu_\mu (νˉμ\bar{\nu}_\mu) and of νˉe\bar{\nu}_e (νe\nu_e) to ντ\nu_\tau or νˉτ\bar{\nu}_\tau for neutrinos from a 20 GeV muon storage ring, within the strong mixing scheme and on the basis of the squared mass differences which are compatible with all reported neutrino anomalies, including the LSND data. In contrast to other solutions which ignore the Los Alamos anomaly, we find charged tau production rates which should be measurable in a realistic set up. As a consequence, determining the complete mass spectrum of neutrinos as well as all three mixing angles seems within reach. Matter effects are discussed thoroughly but are found to be small in this situation.Comment: 11 pages, 5 postscript figures (eps

    Algebraic connections on parallel universes

    Full text link
    For any manifold MM, we introduce a \ZZ -graded differential algebra Ξ\Xi, which, in particular, is a bi-module over the associative algebra C(MM)C(M\cup M). We then introduce the corresponding covariant differentials and show how this construction can be interpreted in terms of Yang-Mills and Higgs fields. This is a particular example of noncommutative geometry. It differs from the prescription of Connes in the following way: The definition of Ξ\Xi does not rely on a given Dirac-Yukawa operator acting on a space of spinors.Comment: 10 pages, CPT-93/PE 294

    Exploding SNe with jets: time-scales

    Full text link
    We perform hydrodynamical simulations of core collapse supernovae (CCSNe) with a cylindrically-symmetrical numerical code (FLASH) to study the inflation of bubbles and the initiation of the explosion within the frame of the jittering-jets model. We study the typical time- scale of the model and compare it to the typical time-scale of the delayed neutrino mechanism. Our analysis shows that the explosion energy of the delayed neutrino mechanism is an order of magnitude less than the required 10^51 erg.Comment: To appear in Death of Massive Stars: Supernovae and Gamma-Ray Bursts, Proceedings IAU Symposium No. 279, 2012, eds. P. Roming, N. Kawai & E. Pia

    Neutrino-driven wind and wind termination shock in supernova cores

    Get PDF
    The neutrino-driven wind from a nascent neutron star at the center of a supernova expands into the earlier ejecta of the explosion. Upon collision with this slower matter the wind material is decelerated in a wind termination shock. By means of hydrodynamic simulations in spherical symmetry we demonstrate that this can lead to a large increase of the wind entropy, density, and temperature, and to a strong deceleration of the wind expansion. The consequences of this phenomenon for the possible r-process nucleosynthesis in the late wind still need to be explored in detail. Two-dimensional models show that the wind-ejecta collision is highly anisotropic and could lead to a directional dependence of the nucleosynthesis even if the neutrino-driven wind itself is spherically symmetric.Comment: 6 pages, 3 figures, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 200

    Only Three

    Full text link
    It is shown that it is possible to account for all experimental indications for neutrino oscillations with just three flavours. In particular we suggest that the atmospheric neutrino anomaly and the LSND result can be explained by the same mass difference and mixing. Possible implications and future tests of the resulting mass and mixing pattern are given.Comment: 10 pages, 2 Postscript figures (eps

    Models of Electroweak Interactions in Non-Commutative Geometry: A Comparison

    Full text link
    Alain Connes' construction of the standard model is based on a generalized Dirac-Yukawa operator and the K-cycle (\HD ,D), with \HD a fermionic Hilbert space. If this construction is reformulated at the level of the differential algebra then a direct comparison with the alternative approach by the Marseille-Mainz group becomes possible. We do this for the case of the toy model based on the structure group U(1)×U(1)U(1)\times U(1) and for the SU(2)×U(1)SU(2)\times U(1) of electroweak interactions. Connes' results are recovered without the somewhat disturbing γ5\gamma_{5}-factors in the fermion mass terms and Yukawa couplings. We discuss both constructions in the same framework and, in particular, pinpoint the origin of the difference in the Higgs potential obtained by them.Comment: 9p, MZ-TH/93-2

    Oscillations, Neutrino Masses and Scales of New Physics

    Get PDF
    We show that all the available experimental information involving neutrinos can be accounted for within the framework of already existing models where neutrinos have zero mass at tree level, but obtain a small Dirac mass by radiative corrections.Comment: 10 pages, 3 postscript figures (eps

    Global Anisotropies in Supernova Explosions and Pulsar Recoil

    Full text link
    We show by two-dimensional and first three-dimensional simulations of neutrino-driven supernova explosions that low (l=1,2) modes can dominate the flow pattern in the convective postshock region on timescales of hundreds of milliseconds after core bounce. This can lead to large global anisotropy of the supernova explosion and pulsar kicks in excess of 500 km/s.Comment: 3 pages, 2 figures, contribution to Procs. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 200
    corecore