47 research outputs found

    Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro

    Get PDF
    Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged. In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane

    Sensitivity to heat in MS patients: a factor strongly influencing symptomology - an explorative survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many individuals diagnosed with Multiple Sclerosis (MS) are sensitive to increased body temperature, which has been recognized as correlating with the symptom of fatigue. The need to explore this association has been highlighted. The aim of this study was to investigate the occurrence of heat sensitivity and its relations to disease course, disability, common MS-related symptoms and ongoing immunosuppressive treatments among individuals 65 years of age or younger diagnosed with MS.</p> <p>Methods</p> <p>A cross-sectional designed survey was undertaken. A questionnaire was sent to MS-patients with an Expanded Disability Status Score (EDSS) in the interval of 0-6.5 and who were between 20 and 65 years of age, living in an eastern region of Sweden (n = 334). Besides occurrence of heat sensitivity (Yes/No) and corresponding questions, the Fatigue Severity Scale (FSS), the MS-related symptom checklist and the Perceived Deficit Questionnaire (PDQ) were included. Data were analysed in relation to data level using Chi-square, Mann Whitney U-test, and Student's t-test. Pearson's and Spearman's correlations were calculated. In the logistic regression analyses (enter) dichotomized MS-symptoms were used as dependent variables, and EDSS, disease-course, time since onset, heat-sensitivity, age and sex (female/male) were independent variables. In the linear regression analyses, enter, mean FSS and summarized PDQ were entered as dependent variables and EDSS, disease-course, time since onset, heat sensitivity, age and sex (female/male) were independent variables.</p> <p>Results</p> <p>Of the responding patients (n = 256), 58% reported heat sensitivity. The regression analyses revealed heat sensitivity as a significant factor relating not only to fatigue (p < 0.001), but also to several other common MS symptoms such as pain (p < 0.001), concentration difficulties (p < 0.001), and urination urgency (p = 0.009).</p> <p>Conclusions</p> <p>Heat sensitivity in MS patients is a key symptom that is highly correlated with disabling symptoms such as fatigue, pain, concentration difficulty and urination urgency.</p

    Fast- or Slow-inactivated State Preference of Na+ Channel Inhibitors: A Simulation and Experimental Study

    Get PDF
    Sodium channels are one of the most intensively studied drug targets. Sodium channel inhibitors (e.g., local anesthetics, anticonvulsants, antiarrhythmics and analgesics) exert their effect by stabilizing an inactivated conformation of the channels. Besides the fast-inactivated conformation, sodium channels have several distinct slow-inactivated conformational states. Stabilization of a slow-inactivated state has been proposed to be advantageous for certain therapeutic applications. Special voltage protocols are used to evoke slow inactivation of sodium channels. It is assumed that efficacy of a drug in these protocols indicates slow-inactivated state preference. We tested this assumption in simulations using four prototypical drug inhibitory mechanisms (fast or slow-inactivated state preference, with either fast or slow binding kinetics) and a kinetic model for sodium channels. Unexpectedly, we found that efficacy in these protocols (e.g., a shift of the “steady-state slow inactivation curve”), was not a reliable indicator of slow-inactivated state preference. Slowly associating fast-inactivated state-preferring drugs were indistinguishable from slow-inactivated state-preferring drugs. On the other hand, fast- and slow-inactivated state-preferring drugs tended to preferentially affect onset and recovery, respectively. The robustness of these observations was verified: i) by performing a Monte Carlo study on the effects of randomly modifying model parameters, ii) by testing the same drugs in a fundamentally different model and iii) by an analysis of the effect of systematically changing drug-specific parameters. In patch clamp electrophysiology experiments we tested five sodium channel inhibitor drugs on native sodium channels of cultured hippocampal neurons. For lidocaine, phenytoin and carbamazepine our data indicate a preference for the fast-inactivated state, while the results for fluoxetine and desipramine are inconclusive. We suggest that conclusions based on voltage protocols that are used to detect slow-inactivated state preference are unreliable and should be re-evaluated
    corecore