1,782 research outputs found

    Effects of Static Versus Dynamic Cupping on Ankle Dorsiflexion

    Get PDF
    PURPOSE: Cupping therapy involves lifting and separating fascial tissue to facilitate stretching and promote blood flow. Although cupping is a common treatment modality for pain, studies are inconsistent in regards to whether cupping improves other outcomes, like range of motion. Possessing a limited range of motion can lead to musculoskeletal injury. The aim of this research is to determine the acute effect of different methods of cupping therapy on ankle dorsiflexion. METHODS: A total of 35 healthy adults (age: 22.1±4.52 years) with an average ankle ROM of 34.68±4.22° at baseline were included in the study. Participants were randomly assigned to one of four cupping therapy groups: static cupping, dynamic cupping, static sham cupping, or dynamic sham cupping. Ankle ROM was measured pre- and immediately post-intervention. The minimal detectable change (MDC) for weight bearing ankle dorsiflexion was calculated based on the reliability of baseline measurements at 4.96º. A 2x4 mixed ANOVA was used to determine whether ankle ROM differed pre-to-post treatment. RESULTS: All groups showed improvement in ankle ROM post-intervention (38.41±4.95º), but no significant interaction effect between intervention and time (F(3,31)=1.31, p=.289). However, a significant main effect of time was observed(F(1,31)=33.69, p CONCLUSION: These findings support the potential of cupping as a modality for improving ankle ROM. Dynamic cupping may be more effective than static cupping for improving ankle ROM, so dynamic cupping can be considered as a potential intervention to address limited ankle ROM

    The stability of a graph partition: A dynamics-based framework for community detection

    Full text link
    Recent years have seen a surge of interest in the analysis of complex networks, facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs, which can provide insight into the structure and function of the overall system. Sparked by seminal work by Newman and Girvan, an interesting line of research has been devoted to investigating modular community structure in networks, revitalising the classic problem of graph partitioning. However, modular or community structure in networks has notoriously evaded rigorous definition. The most accepted notion of community is perhaps that of a group of elements which exhibit a stronger level of interaction within themselves than with the elements outside the community. This concept has resulted in a plethora of computational methods and heuristics for community detection. Nevertheless a firm theoretical understanding of most of these methods, in terms of how they operate and what they are supposed to detect, is still lacking to date. Here, we will develop a dynamical perspective towards community detection enabling us to define a measure named the stability of a graph partition. It will be shown that a number of previously ad-hoc defined heuristics for community detection can be seen as particular cases of our method providing us with a dynamic reinterpretation of those measures. Our dynamics-based approach thus serves as a unifying framework to gain a deeper understanding of different aspects and problems associated with community detection and allows us to propose new dynamically-inspired criteria for community structure.Comment: 3 figures; published as book chapte

    Emergence of slow-switching assemblies in structured neuronal networks

    Get PDF
    Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics.Comment: The first two authors contributed equally -- 18 pages, including supplementary material, 10 Figures + 2 SI Figure

    Structure of complex networks: Quantifying edge-to-edge relations by failure-induced flow redistribution

    Full text link
    The analysis of complex networks has so far revolved mainly around the role of nodes and communities of nodes. However, the dynamics of interconnected systems is commonly focalised on edge processes, and a dual edge-centric perspective can often prove more natural. Here we present graph-theoretical measures to quantify edge-to-edge relations inspired by the notion of flow redistribution induced by edge failures. Our measures, which are related to the pseudo-inverse of the Laplacian of the network, are global and reveal the dynamical interplay between the edges of a network, including potentially non-local interactions. Our framework also allows us to define the embeddedness of an edge, a measure of how strongly an edge features in the weighted cuts of the network. We showcase the general applicability of our edge-centric framework through analyses of the Iberian Power grid, traffic flow in road networks, and the C. elegans neuronal network.Comment: 24 pages, 6 figure

    Comparison of Artificial Intelligence based approaches to cell function prediction

    Get PDF
    Predicting Retinal Pigment Epithelium (RPE) cell functions in stem cell implants using non-invasive bright field microscopy imaging is a critical task for clinical deployment of stem cell therapies. Such cell function predictions can be carried out using Artificial Intelligence (AI) based models. In this paper we used Traditional Machine Learning (TML) and Deep Learning (DL) based AI models for cell function prediction tasks. TML models depend on feature engineering and DL models perform feature engineering automatically but have higher modeling complexity. This work aims at exploring the tradeoffs between three approaches using TML and DL based models for RPE cell function prediction from microscopy images and at understanding the accuracy relationship between pixel-, cell feature-, and implant label-level accuracies of models. Among the three compared approaches to cell function prediction, the direct approach to cell function prediction from images is slightly more accurate in comparison to indirect approaches using intermediate segmentation and/or feature engineering steps. We also evaluated accuracy variations with respect to model selections (five TML models and two DL models) and model configurations (with and without transfer learning). Finally, we quantified the relationships between segmentation accuracy and the number of samples used for training a model, segmentation accuracy and cell feature error, and cell feature error and accuracy of implant labels. We concluded that for the RPE cell data set, there is a monotonic relationship between the number of training samples and image segmentation accuracy, and between segmentation accuracy and cell feature error, but there is no such a relationship between segmentation accuracy and accuracy of RPE implant labels

    Drug Hypersensitivity Syndrome toCarbamazepine and Human Herpes Virus 6 Infection: Case Reportand Literature Review

    Get PDF
    Abstract.: We describe a patient with a drug-induced hypersensitivity syndrome to carbamazepine and a concomitant active infection with human herpes virus 6 (HHV-6). The potential role of HHV-6 regarding the drug-induced hypersensitivity syndrome is discussed and the main clinical features of this potentially fatal adverse drug reaction are highlighte

    Evaluation Techniques and Systems for Answer Set Programming: a Survey

    Get PDF
    Answer set programming (ASP) is a prominent knowledge representation and reasoning paradigm that found both industrial and scientific applications. The success of ASP is due to the combination of two factors: a rich modeling language and the availability of efficient ASP implementations. In this paper we trace the history of ASP systems, describing the key evaluation techniques and their implementation in actual tools
    corecore