
Evaluation Techniques and Systems for Answer Set Programming: A Survey

Martin Gebser,1 Nicola Leone,2 Marco Maratea,3 Simona Perri,2
Francesco Ricca2 and Torsten Schaub1

1 University of Potsdam, Germany
2 University of Calabria, Italy
3 University of Genova, Italy

Abstract
Answer set programming (ASP) is a prominent
knowledge representation and reasoning paradigm
that found both industrial and scientific applica-
tions. The success of ASP is due to the combina-
tion of two factors: a rich modeling language and
the availability of efficient ASP implementations.
In this paper we trace the history of ASP systems,
describing the key evaluation techniques and their
implementation in actual tools.

1 Introduction
Answer Set Programming (ASP) [?] is a well-known ap-
proach to knowledge representation and reasoning, with roots
in the areas of logic programming and non-monotonic rea-
soning [?]. ASP is in close relationships to other formalisms
such as Propositional Satisfiability (SAT), Satisfiability Mod-
ulo Theories (SMT), Quantified Boolean Formulas (QBF),
Constraint Programming (CP), Planning and Scheduling, and
many others.

The language of ASP allows for defining solutions to com-
plex problems in a purely declarative way. The main con-
struct is a rule, i.e., an expression of the formHead← Body,
where Body is a logic conjunction possibly involving nega-
tion, and Head is, in the basic formulation, either an atomic
formula or a logic disjunction. ASP programs, i.e., collec-
tion of rules, are first order theories that can model uniformly
solutions for a given problem over varying instances. The
semantics of ASP programs is given in terms of answer sets
(or stable models) [?]. The basic language introduced in [?]
has been extended over the years by introducing many new
constructs [?; ?], that further simplify the modeling of com-
plex problems. A standardized syntax for ASP has been then
introduced in [?].

The readability and expressiveness of the language com-
bined with the availability of efficient implementations made
ASP one of the major declarative paradigms for logic-based
Artificial Intelligence (AI), suitably employed for realizing
many AI applications [?].

The research of efficient evaluation techniques for the lan-
guage of ASP started during the 90-ties [?], after a first period
in which complexity arguments discouraged the implementa-
tion of systems. Indeed, the first serious attempts appeared

about 10 years after the introduction of the stable model se-
mantics. The subsequent introduction of new evaluation tech-
niques, often fruit of cross-fertilization with the neighboring
communities of SAT and CP, resulted in the design of more
and more efficient ASP systems.

The advancement of the state of the art in ASP solving
was consistent and continuous in the last few years, as wit-
nessed by the results of the biannual ASP Competitions series
(see [?; ?] for the last events). This paper traces this history
surveying the major contributions to the development of eval-
uation techniques and solvers for ASP that made it one of the
most attractive paradigms of logic-based AI.

2 The History of ASP Evaluation
Almost all ASP implementations follow a two-step evalua-
tion process [?]. The first step, called grounding, takes an
ASP program as input and produces an equivalent variable-
free (or ground) program that has the same answer sets as the
input program. Such a ground program is the input of the
second step of the process, called solving, having the role of
searching for one or more answer sets, which coincide with
the ones of the non-ground program.

In the following we first present the evolution of grounders,
followed by the history of solvers; then, we mention the ap-
proaches blending existing techniques in portfolios, those ca-
pable of exploiting multi-processing, and, finally, we review
some (relatively new) attempts deviating from the customary
two-steps evaluation, called grounding-less systems, where
grounding and solving are somehow interleaved.

2.1 Grounders
Grounders perform a complex task that may have a big impact
on the performance of the whole system, as their output is the
input for the solving phase: if input non-ground programs can
be assumed to be fixed (data complexity), grounding is poly-
nomial; however, as soon as variable programs are given in
input the produced ground program is potentially of exponen-
tial size with respect to the input program. Thus, grounders
employ smart procedures that are geared toward efficiently
producing a ground program that preserves the semantics but
is sensibly smaller than the one that could be obtained by a
simple replacement of the variables with all the constants of
the program.

One of the first released grounders was LPARSE [?], a front-
end grounder system, whose output encoded in a suitable
numeric format, is intended to be given as input to a sepa-
rated solver. LPARSE accepts logic programs respecting its ω-
restrictedness condition, i.e. it enforces each variable in a rule
to occur in a positive body literal, called domain literal, whose
predicate (i) is not mutually recursive with the head, and (ii)
is neither unstratified nor dependent (also transitively) on an
unstratified predicate. A similar approach is used in the ear-
lier versions of GRINGO [?], that bind non-global variables by
domain predicates to enforce a λ-restrictedness condition, an
extension of ω-restrictedness. Essentially, these restrictions
are used in order to treat positive recursion among predicates,
and guarantee to have a finite grounding.

The grounder of the DLV system [?], and the more recent
versions of GRINGO (starting from 3.0) instead imposes the
less restrictive condition of safety, requiring that each vari-
able in a rule appears in some positive body literal. These
grounders are based on semi-naive database evaluation tech-
niques [?] for avoiding duplicate work during grounding.
Grounding is seen as an iterative bottom-up process guided
by the successive expansion of a program’s term base, that is,
the set of variable-free terms constructible from the signature
of the program at hand.

Recently a brand new version of the DLV grounder has been
released, as the stand-alone grounder I-DLV [?]. The new
grounder relies on the theoretical foundations of its predeces-
sor but has been completely redesigned, integrating new opti-
mizations, and usability features such as, annotations, python
interface, interoperability mechanisms.

2.2 Solvers
The search for (optimal) answer sets (i.e., ASP solving) ba-
sically amounts to Boolean constraint solving. This task was
pioneered in the area of SAT by the classical Davis-Putnam-
Logemann-Loveland (DPLL) procedure [?]; more recently,
it has been solved by resorting to the Conflict-Driven Clause
Learning (CDCL) [?] algorithm. Similarly, the so-called na-
tive answer set solvers are based on the same backtracking
procedures used in SAT solving, yet refined to the semantics
and additional constructs of ASP programs. Alternatively,
translation-based solvers can be obtained by applying trans-
formations to ground programs to obtain instances of other
formalisms featuring efficient solvers, and exploiting these
solvers for computing answer sets.

Native Approaches. The first developed ASP solvers,
namely DLV [?] and SMODELS [?], were pioneered in the late
’90s and pursued “native” approaches based on the classical
DPLL procedure. While DPLL augments basic backtrack-
ing search with unit propagation on clauses, DLV and SMOD-
ELS adjust such techniques to ASP programs. In particular,
this includes dedicated inference mechanisms to detect and
falsify so-called unfounded sets [?; ?], which particularly ad-
dress positive recursion in case of non-tight programs. Later
on, DLV was extended with backjumping techniques [?], in
place of basic backtracking, and look-back heuristics [?] that
take advantage of the backjumping process [?]. Similarly,
the SMODELSCC solver [?] extended the algorithm of SMOD-
ELS with backjumping, while further adding mechanisms for

conflict-driven clause learning, as pioneered by CDCL in the
area of SAT.

The second generation of native ASP solvers, including
CLASP [?] and WASP [?], integrates CDCL-style search with
propagation principles dedicated to ASP programs. Imple-
mentation features shared with modern SAT solvers include,
e.g., watched literals, activity-based heuristics, and rapid
restarts [?]. Such basic features are accompanied by tech-
niques for dealing with unfounded sets, aggregates, and opti-
mization in order to cover the range of modeling concepts
and computational tasks available in ASP [?]. While the
IDP system [?] has been conceived as a model generator for
first-order theories extended with inductive definitions, it has
much in common with the aforementioned ASP grounders
and solvers. That is, it includes a grounder, GIDL [?], a solver,
MINISATID [?], and handles (positive) recursion among atoms
in inductive definitions.

For solving a program P which is not-Head-Cycle-Free
(non-HCF), i.e. where checking whether a model of P is
⊆-minimal w.r.t. P I is in general coNP-complete, native
ASP solvers employ a two-level architecture in which DPLL-
or CDCL-style search is used for (i) generating candidate
models of P and (ii) checking for the existence of smaller
counter-models of P I . To this end, the propagation princi-
ples of the first respective solver, DLV, are capable of handling
disjunctive rules [?], while the check for counter-models is
delegated to a SAT solver. The GNT system [?] pursues a cor-
responding approach by casting the tasks of generating and
checking candidate models to ASP programs processed with
separate instances of SMODELS. Similarly, CLASP (or its nowa-
days deprecated sibling CLASPD) and WASP couple comple-
mentary instances of their CDCL-style search engines to per-
form model generation or checking, respectively. Both CLASP

and WASP encode the checking task for arbitrary candidate
models [?; ?], and perform checking via assumption-based
reasoning [?].

Translation-Based Approaches. From ? (?), we know that
answer sets of a tight program [?] P coincide with propo-
sitional models of P ’s completion the answer sets of tight
programs can be computed by running SAT solvers. By re-
lying on this result, the first version of the SAT-based solver
CMODELS [?] was based on this correspondence. As a gener-
alization to the non-tight case, [?] proposed loop formulas
whose addition to a program’s completion establishes cor-
respondence between propositional models and answer sets.
Since the number of required loop formulas can be exponen-
tial [?], the SAT-based solvers ASSAT [?] and CMODELS, from
its second version on, add loop formulas incrementally to
eliminate models that are no answer sets. In fact, loop formu-
las deny unfounded sets [?], which are also handled by native
systems, so that there is a close proximity between native and
SAT-based solvers utilizing loop formulas, and both kinds of
systems are based on similar search procedures. This also
carries forward to non-HCF programs [?], where the third
version [?] of CMODELS utilizes SAT solvers also for stabil-
ity checking.

The translation by LP2SAT [?; ?], instead, is based on so-
called level rankings [?] to check ⊆-minimality w.r.t. the

reduct of an HCF program in the non-tight case. Such level
rankings are encoded a priori, rather than incrementally, and
expressing them in SAT requires sub-quadratic instead of ex-
ponential space. Technically, the tool LP2ACYC [?] instru-
ments an ASP program such that propositional models of
its completion subject to an acyclicity condition match the
answer sets of the program. The required acyclicity can
then be established via level rankings, where linear repre-
sentations are feasible in several target formalisms, includ-
ing ASP, Pseudo-Boolean Constraints/Optimization, or SAT
Modulo Acyclicity [?; ?], SMT with Difference or Bit-Vector
Logic [?; ?], and Mixed Integer Programming [?]. In fact,
the translation-based systems participating in the Sixth ASP
Competition [?] are based on this infrastructure, while SAT-
based solvers utilizing loop formulas have come out of fash-
ion.

2.3 Portfolio Approaches

Automated algorithm selection techniques [?] aim at robust-
ness across a range of heterogeneous inputs. Inspired by
SATZILLA in the area of SAT, the CLASPFOLIO system [?;
?] uses support vector regression to learn scoring functions
approximating the performance of several CLASP variants in
a training phase. Given an instance, CLASPFOLIO then ex-
tracts features and evaluates such functions in order to pick
the most promising CLASP variant for solving the instance.
This algorithm selection approach was particularly success-
ful in the Third ASP Competition [?], held in 2011, where
CLASPFOLIO won the first place in the NP category and the
second place overall (without participating in the Beyond-NP
category). The ME-ASP system [?; ?] goes beyond the solver-
specific setting of CLASPFOLIO and chooses among different
grounders as well as solvers. Grounder selection traces back
to [?], and similar to the QBF solver AQME [?], ME-ASP uses
a classification method for performance prediction. Notably,
“bad” classifications can be treated by adding respective in-
stances to the training set of ME-ASP [?], which enables an
adjustment to new problems or instances thereof. In the Sev-
enth ASP Competition [?], the winning system was I-DLV+S

that utilizes I-DLV for grounding and automatically selects
back-ends for solving through classification between CLASP

and WASP.
Going beyond the selection of a single solving strategy

from a portfolio, the ASPEED system [?] indeed runs differ-
ent solvers, sequentially or in parallel, as successfully per-
formed by PPFOLIO in the 2011 SAT Competition. Given a
benchmark set, a fixed time limit per instance, and perfor-
mance results for candidate solvers, the idea of ASPEED is to
assign time budgets to the solvers such that a maximum num-
ber of instances can be completed within the allotted time. In
other words, the goal is to divide the total runtime per com-
puting core among solvers such that the number of instances
on which at least one solver successfully completes its run
is maximized. The portfolio then consists of all solvers as-
signed a non-zero time budget along with a schedule which
solvers to run on the same computing core. Calculating such
an optimal portfolio for a benchmark set is an Optimization
problem addressed with ASP in ASPEED.

2.4 Multi-processing in ASP Systems
We below describe approaches taking advantage of multi-
core/processor support during both grounding and/or solving.

Concerning grounding, parallel grounding techniques were
developed as extensions of LPARSE [?] and the DLV grounder
[?]. The former approach was designed for distributing
LPARSE incarnations, working in local memory, on Beowulf
clusters, while the latter aims at shared-memory parallelism
on multi-core/processor machines. In particular, the parallel
version of the DLV grounder allows for a concurrent instan-
tiation at several levels: it allows for instantiating in parallel
subprograms of the program in input, rules within a given
subprogram, and also for parallelizing the evaluation of a sin-
gle rule. This is accompanied by techniques for granularity
control and dynamic load balancing to achieve an efficient
parallelization.

Concerning ASP solvers, these have been also extended
to exploit multi-core/multi-processor machines by introduc-
ing parallel evaluation methods. The first approaches in
this direction [?; ?; ?; ?] were based on SMODELS and di-
vided its DPLL-style search among cluster machines or mul-
tiple threads, primarily using guiding paths [?], pioneered in
the area of SAT, to process separate subproblems in paral-
lel. Cluster and multi-threaded versions of the CDCL-based
solver CLASP [?; ?], however, turned out to be particularly
successful when applying a parallel portfolio of CLASP vari-
ants to a common problem. Recent versions of CLASP [?] fur-
ther extend the multi-threaded search infrastructure to non-
HCF programs [?]. The aforementioned ASPEED system al-
lows for scheduling solver runs on multiple computing cores.
Also, translation-based systems may readily exploit paral-
lelism provided by respective back-end solvers, as done in
the 2013 and 2014 editions of the ASP Competition. Finally,
[?] provide an approach to parallel CDCL-style ASP solving
utilizing GPUs.

2.5 Grounding-less ASP Systems
In contraposition with the traditional ground&solve ap-
proach, systems such as Gasp [?], Asperix [?], and Omiga [?]
perform a lazy grounding technique in which grounding and
solving steps are interleaved, and rules are grounded on-
demand during solving. These systems try to overcome the
so called grounding bottleneck, that occurs on problems for
which the instantiation is inherently so huge that the tradi-
tional approach is not suitable, and this occurs also when
problems can be solved in polynomial space [?]. However,
in general, they suffer from poor search performance since
they do not perform conflict-driven learning and backjumping
for reducing the search space. Recently, a new ASP system,
namely Alpha [?], has been developed aiming at blending
lazy-grounding and learning of non-ground clauses. Finally,
[?] proposed lazy model expansion within the FO(ID) formal-
ism supporting partially lazy instantiation of constraints.

3 System Interfaces
Given that the implementations of ASP systems are nowadays
highly optimized and sophisticated, modifying a system to
support a richer language or dedicated reasoning techniques

is non-obvious. In order to facilitate making such exten-
sions, modern ASP systems like CLINGO [?; ?] and WASP [?;
?] provide APIs.

The interface of CLINGO offers customized control about
grounding and solving, where specific routines can be devel-
oped in C as well as the scripting languages lua and python.
One major target application is incremental solving [?], where
parts of an ASP program are successively (re)grounded and
search is repeatedly performed w.r.t. the growing ground in-
stantiation. Corresponding techniques have been successfully
utilized in areas like automated planning [?] and finite model
finding [?], where the horizon needed for a problem solu-
tion is a priori unknown or its theoretical bound prohibitively
large, respectively. The second main application of CLINGO’s
interface consists of its extension by external propagators
[?], implementing customized reasonings on top of the basic
CDCL-style search.

Along the same lines, the interface of WASP allows for
equipping its search procedure with external propagators,
which can be implemented in C++, perl and python, for ex-
tending the basic reasoning capabilities. As demonstrated
in [?], the incorporation of propagators can overcome the
grounding bottleneck on several combinatorial problems.
Moreover, WASP’s interface supports the integration of cus-
tom search heuristics [?], and respective methods were suc-
cessfully applied to the industrial Partner Units [?] and Com-
bined Configuration [?] problems. A first attempt of combin-
ing I-DLV and WASP in a monolithic design has been described
in [?]. The resulting project is called DLV2, and combines the
python interface of WASP with the one offered by I-DLV with
the aim of easier the development of propagators or heuris-
tics.

4 Systems for ASP Extensions
Advanced frameworks that extend the common syntax and se-
mantics of ASP programs include Constraint ASP (CASP) [?;
?; ?], ASP Modulo Theories (ASPMT) [?], Bound-Founded
ASP (BFASP) [?], and Higher-order EXternal (HEX) pro-
grams [?]. The idea of CASP systems like ACSOLVER,
CLINGCON, EZCSP, IDP, INCA, and MINGO, whose key fea-
tures are analyzed and compared in [?], is to augment the
Boolean problem representations of ASP with constraints
over multi-valued variables in order to compactly formulate
quantitative conditions. Corresponding implementation tech-
niques are inspired by SAT Modulo Theories (SMT) solvers,
and ASPMT systems like ASPMT2SMT and EZSMT furnish
translations to exploit SMT solvers as search back-ends. The
BFASP system CHUFFED extends a Constraint Programming
(CP) solver with a propagator for bound-founded integer vari-
ables that default to either the smallest or largest value avail-
able in their domains, thus generalizing the minimality con-
dition on answer sets from Boolean to multi-valued vari-
ables. HEX programs allow for equipping ASP programs
with external sources of knowledge and/or computation, and
the DLVHEX system features techniques to integrate the eval-
uation of external sources into the search of ASP solvers.
Application domains making use of ASP extensions as fur-
nished by the CASP, ASPMT, BFASP, and HEX frameworks

include, e.g., hybrid task and motion planning in robotics,
time scheduling, as well as ontological reasoning.

5 Conclusion
The research of techniques for implementing the stable model
semantics started about twenty years ago. This paper retraces
this history surveying the major contributions that made ASP
one of the most attractive paradigms of logic-based AI.

