955 research outputs found

    Calculating Nonlocal Optical Properties of Structures with Arbitrary Shape

    Full text link
    In a recent Letter [Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this Article, we detail the full method, and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur.Comment: 30 pages, 12 figures, 1 tabl

    Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles

    Get PDF
    We present a microscopic model for surface-enhanced Raman scattering (SERS) from molecules adsorbed on small noble-metal nanoparticles. In the absence of direct overlap of molecular orbitals and electronic states in the metal, the main enhancement source is the strong electric field of the surface plasmon resonance in a nanoparticle acting on a molecule near the surface. In small particles, the electromagnetic enhancement is strongly modified by quantum-size effects. We show that, in nanometer-sized particles, SERS magnitude is determined by a competition between several quantum-size effects such as the Landau damping of surface plasmon resonance and reduced screening near the nanoparticle surface. Using time-dependent local density approximation, we calculate spatial distribution of local fields near the surface and enhancement factor for different nanoparticles sizes.Comment: 8 pages, 6 figures. Considerably extended final versio

    Surface plasmons at single nanoholes in Au-films

    Full text link
    The generation of surface plasmon polaritons (SPP's) at isolated nanoholes in 100 nm thick Au films is studied using near-field scanning optical microscopy (NSOM). Finite-difference time-domain calculations, some explicitly including a model of the NSOM tip, are used to interpret the results. We find the holes act as point-like sources of SPP's and demonstrate that interference between SPP's and a directly transmitted wave allows for determination of the wavelength, phase, and decay length of the SPP. The near-field intensity patterns can be manipulated by varying the angle and polarization of the incident beam.Comment: 12 pages, 3 figure

    rp-Process weak-interaction mediated rates of waiting-point nuclei

    Full text link
    Electron capture and positron decay rates are calculated for neutron-deficient Kr and Sr waiting point nuclei in stellar matter. The calculation is performed within the framework of pn-QRPA model for rp-process conditions. Fine tuning of particle-particle, particle-hole interaction parameters and a proper choice of the deformation parameter resulted in an accurate reproduction of the measured half-lives. The same model parameters were used to calculate stellar rates. Inclusion of measured Gamow-Teller strength distributions finally led to a reliable calculation of weak rates that reproduced the measured half-lives well under limiting conditions. For the rp-process conditions, electron capture and positron decay rates on 72^{72}Kr and 76^{76}Sr are of comparable magnitude whereas electron capture rates on 78^{78}Sr and 74^{74}Kr are 1--2 orders of magnitude bigger than the corresponding positron decay rates. The pn-QRPA calculated electron capture rates on 74^{74}Kr are bigger than previously calculated. The present calculation strongly suggests that, under rp-process conditions, electron capture rates form an integral part of weak-interaction mediated rates and should not be neglected in nuclear reaction network calculations as done previously.Comment: 13 pages, 4 figures, 4 tables; Astrophysics and Space Science (2012

    Hubble Space Telescope Near-Ultraviolet Spectroscopy of Bright CEMP-s Stars

    Full text link
    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD196944 (V = 8.40, [Fe/H] = -2.41) and HD201626 (V = 8.16, [Fe/H] = -1.51), based on data acquired with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and exhibit clear over-abundances of heavy elements associated with production by the slow neutron-capture process. HD196944 has been well-studied in the optical region, but we are able to add abundance results for six species (Ge, Nb, Mo, Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide the first determination of its orbital period, P=1325 days. HD201626 has only a limited number of abundance results based on previous optical work -- here we add five new species from the NUV, including Pb. We compare these results with models of binary-system evolution and s-process element production in stars on the asymptotic giant branch, aiming to explain their origin and evolution. Our best-fitting models for HD 196944 (M1,i = 0.9Mo, M2,i = 0.86Mo, for [Fe/H]=-2.2), and HD 201626 (M1,i = 0.9Mo , M2,i = 0.76Mo , for [Fe/H]=-2.2; M1,i = 1.6Mo , M2,i = 0.59Mo, for [Fe/H]=-1.5) are consistent with the current accepted scenario for the formation of CEMP-s stars.Comment: 25 pages, 13 figures; accepted for publication in Ap

    A recoil separator for nuclear astrophysics SECAR

    Get PDF
    A recoil separator SECAR has been designed to study radiative capture reactions relevant for the astrophysical rp-process in inverse kinematics for the Facility for Rare Isotope Beams (FRIB). We describe the design, layout, and ion optics of the recoil separator and present the status of the project

    On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements

    Full text link
    For the first time a complete set of the most recent direct data on primary cosmic ray spectra is used as input into calculations of muon flux at sea level in wide energy range Eμ=1−3⋅105E_\mu=1-3\cdot10^5 GeV. Computations have been performed with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained muon intensity with the data of muon experiments shows, that measurements of primary nuclei spectra conform to sea level muon data only up to several tens of GeV and result in essential deficit of muons at higher energies. As it follows from our examination, uncertainties in muon flux measurements and in the description of nuclear cascades development are not suitable to explain this contradiction, and the only remaining factor, leading to this situation, is underestimation of primary light nuclei fluxes. We have considered systematic effects, that may distort the results of the primary cosmic ray measurements with the application of the emulsion chambers. We suggest, that re-examination of these measurements is required with the employment of different hadronic interaction models. Also, in our point of view, it is necessary to perform estimates of possible influence of the fact, that sizable fraction of events, identified as protons, actually are antiprotons. Study of these cosmic ray component begins to attract much attention, but today nothing definite is known for the energies >40>40 GeV. In any case, to realize whether the mentioned, or some other reasons are the sources of disagreement of the data on primaries with the data on muons, the indicated effects should be thoroughly analyzed
    • …
    corecore