51 research outputs found

    Optical and mechanical design of the extreme AO coronagraphic instrument MagAO-X

    Full text link
    Here we review the current optical mechanical design of MagAO-X. The project is post-PDR and has finished the design phase. The design presented here is the baseline to which all the optics and mechanics have been fabricated. The optical/mechanical performance of this novel extreme AO design will be presented here for the first time. Some highlights of the design are: 1) a floating, but height stabilized, optical table; 2) a Woofer tweeter (2040 actuator BMC MEMS DM) design where the Woofer can be the current f/16 MagAO ASM or, more likely, fed by the facility f/11 static secondary to an ALPAO DM97 woofer; 3) 22 very compact optical mounts that have a novel locking clamp for additional thermal and vibrational stability; 4) A series of four pairs of super-polished off-axis parabolic (OAP) mirrors with a relatively wide FOV by matched OAP clocking; 5) an advanced very broadband (0.5-1.7micron) ADC design; 6) A Pyramid (PWFS), and post-coronagraphic LOWFS NCP wavefront sensor; 7) a vAPP coronagraph for starlight suppression. Currently all the OAPs have just been delivered, and all the rest of the optics are in the lab. Most of the major mechanical parts are in the lab or instrument, and alignment of the optics has occurred for some of the optics (like the PWFS) and most of the mounts. First light should be in 2019A.Comment: 10 pages, proc. SPIE 10703, Adaptive Optics IV, Austin TX, June 201

    Three-sided pyramid wavefront sensor. II. Preliminary demonstration on the new CACTI testbed

    Full text link
    The next generation of giant ground and space telescopes will have the light-collecting power to detect and characterize potentially habitable terrestrial exoplanets using high-contrast imaging for the first time. This will only be achievable if the performance of Giant Segmented Mirror Telescopes (GSMTs) extreme adaptive optics (ExAO) systems are optimized to their full potential. A key component of an ExAO system is the wavefront sensor (WFS), which measures aberrations from atmospheric turbulence. A common choice in current and next-generation instruments is the pyramid wavefront sensor (PWFS). ExAO systems require high spatial and temporal sampling of wavefronts to optimize performance, and as a result, require large detectors for the WFS. We present a closed-loop testbed demonstration of a three-sided pyramid wavefront sensor (3PWFS) as an alternative to the conventional four-sided pyramid wavefront (4PWFS) sensor for GSMT-ExAO applications on the new Comprehensive Adaptive Optics and Coronagraph Test Instrument (CACTI). The 3PWFS is less sensitive to read noise than the 4PWFS because it uses fewer detector pixels. The 3PWFS has further benefits: a high-quality three-sided pyramid optic is easier to manufacture than a four-sided pyramid. We detail the design of the two components of the CACTI system, the adaptive optics simulator and the PWFS testbed that includes both a 3PWFS and 4PWFS. A preliminary experiment was performed on CACTI to study the performance of the 3PWFS to the 4PWFS in varying strengths of turbulence using both the Raw Intensity and Slopes Map signal processing methods. This experiment was repeated for a modulation radius of 1.6 lambda/D and 3.25 lambda/D. We found that the performance of the two wavefront sensors is comparable if modal loop gains are tuned.Comment: 28 Pages, 15 Figures, and 4 Table

    HIP 67506 C: MagAO-X Confirmation of a New Low-Mass Stellar Companion to HIP 67506 A

    Full text link
    We report the confirmation of HIP 67506 C, a new stellar companion to HIP 67506 A. We previously reported a candidate signal at 2λ\lambda/D (240~mas) in L′^{\prime} in MagAO/Clio imaging using the binary differential imaging technique. Several additional indirect signals showed that the candidate signal merited follow-up: significant astrometric acceleration in Gaia DR3, Hipparcos-Gaia proper motion anomaly, and overluminosity compared to single main sequence stars. We confirmed the companion, HIP 67506 C, at 0.1" with MagAO-X in April, 2022. We characterized HIP 67506 C MagAO-X photometry and astrometry, and estimated spectral type K7-M2; we also re-evaluated HIP 67506 A in light of the close companion. Additionally we show that a previously identified 9" companion, HIP 67506 B, is a much further distant unassociated background star. We also discuss the utility of indirect signposts in identifying small inner working angle candidate companions.Comment: 10 pages, 9 figures, 4 tables, accepted to MNRA

    Optical calibration and performance of the adaptive secondary mirror at the Magellan telescope

    Get PDF
    In this paper we describe the procedure for the optical calibration of large size deformable mirrors, acting as wavefront correctors for adaptive optics systems. Adaptive optics compensate the disturbance due to the atmospheric turbulence to restore the telescope resolution. We will showcase in particular the activities performed for the Adaptive Secondary Mirror (ASM) of the Magellan Adaptive Optics system (MagAO), which is an instrument for the 6.5 m Magellan Clay Telescope, located at Las Campanas Observatory, in Chile. The MagAO ASM calibration is part of the MagAO-2K project, a major MagAO upgrade that started in 2016 with the goal of boosting adaptive optics (AO) correction at visible wavelengths to image exoplanets. For the first time, the optical quality of MagAO mirror is reported. We describe the procedures developed to achieve high SNR interferometric measurements of the ASM modes under the presence of dome convection noise and telescope vibrations. These measurements were required to produce an improved control matrix with up to 500 modes to close the AO loop on sky with enhanced performances. An updated slaving algorithm was developed to improve the control of actuators vignetted by the central obscuration. The calibrations yielded also a new ASM flattening command, updating the one in use since the MagAO commissioning in 2013. With the new flattening command, a 22 nm RMS surface error was achieved. Finally, we present on-sky results showing the MagAO performance achieved with the new calibrations

    Development and Reporting of Prediction Models: Guidance for Authors From Editors of Respiratory, Sleep, and Critical Care Journals

    Get PDF
    Prediction models aim to use available data to predict a health state or outcome that has not yet been observed. Prediction is primarily relevant to clinical practice, but is also used in research, and administration. While prediction modeling involves estimating the relationship between patient factors and outcomes, it is distinct from casual inference. Prediction modeling thus requires unique considerations for development, validation, and updating. This document represents an effort from editors at 31 respiratory, sleep, and critical care medicine journals to consolidate contemporary best practices and recommendations related to prediction study design, conduct, and reporting. Herein, we address issues commonly encountered in submissions to our various journals. Key topics include considerations for selecting predictor variables, operationalizing variables, dealing with missing data, the importance of appropriate validation, model performance measures and their interpretation, and good reporting practices. Supplemental discussion covers emerging topics such as model fairness, competing risks, pitfalls of “modifiable risk factors”, measurement error, and risk for bias. This guidance is not meant to be overly prescriptive; we acknowledge that every study is different, and no set of rules will fit all cases. Additional best practices can be found in the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines, to which we refer readers for further details

    Genomic diversity of SARS-CoV-2 during early introduction into the Baltimore-Washington metropolitan area.

    Get PDF
    The early COVID-19 pandemic was characterized by rapid global spread. In Maryland and Washington, DC, United States, more than 2500 cases were reported within 3 weeks of the first COVID-19 detection in March 2020. We aimed to use genomic sequencing to understand the initial spread of SARS-CoV-2 - the virus that causes COVID-19 - in the region. We analyzed 620 samples collected from the Johns Hopkins Health System during March 11-31, 2020, comprising 28.6% of the total cases in Maryland and Washington, DC. From these samples, we generated 114 complete viral genomes. Analysis of these genomes alongside a subsampling of over 1000 previously published sequences showed that the diversity in this region rivaled global SARS-CoV-2 genetic diversity at that time and that the sequences belong to all of the major globally circulating lineages, suggesting multiple introductions into the region. We also analyzed these regional SARS-CoV-2 genomes alongside detailed clinical metadata and found that clinically severe cases had viral genomes belonging to all major viral lineages. We conclude that efforts to control local spread of the virus were likely confounded by the number of introductions into the region early in the epidemic and the interconnectedness of the region as a whole
    • …
    corecore