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Abstract: Prediction models aim to use available data to predict a 
health state or outcome that has not yet been observed. Prediction 
is primarily relevant to clinical practice, but is also used in research, 
and administration. While prediction modeling involves estimating 
the relationship between patient factors and outcomes, it is distinct 
from casual inference. Prediction modeling thus requires unique 
considerations for development, validation, and updating. This doc-
ument represents an effort from editors at 31 respiratory, sleep, and 
critical care medicine journals to consolidate contemporary best 
practices and recommendations related to prediction study de-
sign, conduct, and reporting. Herein, we address issues commonly 
encountered in submissions to our various journals. Key topics 
include considerations for selecting predictor variables, opera-
tionalizing variables, dealing with missing data, the importance of 
appropriate validation, model performance measures and their in-
terpretation, and good reporting practices. Supplemental discus-
sion covers emerging topics such as model fairness, competing 
risks, pitfalls of “modifiable risk factors”, measurement error, and 
risk for bias. This guidance is not meant to be overly prescriptive; 
we acknowledge that every study is different, and no set of rules 
will fit all cases. Additional best practices can be found in the Trans-
parent Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis (TRIPOD) guidelines, to which we refer 
readers for further details. (Crit Care Med 2020; 48:623–633)
Key Words: critical care; pulmonary medicine; prediction models; 
sleep medicine

Prediction is the bedrock of clinical practice. Inherent in 
every diagnosis is a prediction about the course of ill-
ness, and every prescription invokes a prediction about 

a response to treatment. For the most part, clinical predictions 
are made on a case-by-case basis based on a combination of ex-
perience and evidence. More recently, the uptake of electronic 
health records (EHRs), adoption of genomics technologies, 
and the advent of data science and machine learning have ac-
celerated the development and publication of data-driven pre-
diction models throughout medicine. Respiratory, sleep, and 
critical care medicine are no exception; prediction modeling 
has strong foundations in these fields, and they continue to be 
influential in its refinement and uptake.

Journals are witnessing an increase in submissions related to 
prediction modeling. This stands to seed rapid advancement in 
research and practice but also comes at the risk of pursuing false 
leads. As statistical editors, associate editors, and editors-in-chief at 
leading pulmonary, sleep, and critical care journals (Appendix 1), 
we believe it is important to provide guidance on how to maximize 
the usefulness of prediction modeling to capitalize on the oppor-
tunities that modern statistics and data science afford our fields.

INTENDED PURPOSE
This document is intended for both readers and authors of 
studies that describe prediction models. It borrows from expert 
reviews (1–5) and the Transparent Reporting of a multivari-
able prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) guidelines, a comprehensive set of recommenda-
tions on current best practices for publishing prediction mod-
els, to which we direct readers for more information (6, 7).

Our aim is to provide an accessible summary of best prac-
tices and recommendations on prediction modeling, rather 
than to prescribe editorial policy for participating journals. 
We hope this guidance will enhance the overall quality and 
scientific merit of submissions to our various journals, pro-
vide consistency and common ground, and support readers of 
these studies in their critical appraisal of the prediction litera-
ture. Although exhaustive discussion of all the salient aspects 
of prediction modeling are beyond our scope, we attempt to 
address specific issues that we most commonly encounter in 
the review process at our various journals. We also acknowl-
edge that every study is different, and depending on the overall 
goals, some may not conform to the guidance herein. We fur-
ther recognize that this guidance may require updates as the 
fast-moving field of prediction modeling evolves over time.

DEFINITIONS AND SCOPE
The goal of prediction is to use information currently avail-
able to forecast a future outcome (Fig. 1). A prediction model 
is any construct that uses known variables (often called inde-
pendent variables, features, or inputs) to estimate the value of 
this outcome (often called the dependent variable, response, or 
output) before it is observed. This is distinct from causal infer-
ence modeling, which aims to determine how a dependent var-
iable will change as a direct result of altering an independent 
variable (often called an exposure). Causal inference studies, 
which we discuss in more detail elsewhere (8), require careful 
consideration of confounding and other potential biases.

Some prediction models may include causal factors (e.g., 
smoking is both predictive and causative of lung cancer), but in 
the strictest sense, such causal relationships are not required (e.g., 
a rising creatinine may predict impending renal failure, but does 
not itself cause renal failure). Therefore, prediction models are 
developed using different methods and should not be used for 
drawing causal inferences. Doing so can lead to logical fallacies. 
For example, a study may find endotracheal intubation predicts 
mortality, but this certainly does not mean patients with a com-
promised airway should not be intubated. In fact, sometimes the 
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best predictors are interventions that counteract a causal process. 
Removing causal expectations means fewer restrictions on the 
variables a model can include, so long as the goal is properly un-
derstood to be an accurate and generalizable prediction, and not 
a deeper understanding of its biological significance (9).

A useful prediction model should, therefore, satisfy three 
core criteria:

1)	 It must provide a model whereby known variables esti-
mate the value of the event of interest (e.g., for a binary 
outcome, it must have a classifier function), 

2)	 The predictors must be known prior to knowing the out-
come state, and

3)	 The model should retain accuracy when applied to new 
observations (i.e. it must be generalizable).

Some prediction models allow for clear identification of key 
predictors. Others may obscure the precise factors on which 
they most heavily rely, as well as the precise mechanisms by 
which they arrive at predictions. Although this is obviously of 
concern in causal inference exercises, it is sometimes less im-
portant in prediction modeling exercises, so long as the expla-
nation underlying the prediction is felt to be unimportant.

Another important consideration is the intended purpose of 
any given prediction model. This generally falls into one of two 
categories. First are clinical prediction models intended for bed-
side use to inform the care of individual patients. For example, a 
rapid shallow breathing index calculated during a spontaneous 
breathing trial may predict whether a mechanically ventilated 
patient will be successfully extubated. Second are system pre-
diction models intended for deployment across populations for 
research, benchmarking, and other administrative purposes. For 
example, an Acute Physiology and Chronic Health Evaluation 
IV score applied to a particular ICU cohort compares its overall 
predicted mortality risk with that of another cohort (10). The 
first type of predictive model is typically applied prospectively to 
forecast individual events, whereas the latter is typically deployed 
to characterize an overall population. Nonetheless, both should 
respect the temporal requirements necessary for an unbiased 
prediction. Though related in methodology, these two types of 
prediction models differ in how they should be evaluated and 
reported. Specifically, applying a model in clinical practice may 

require higher precision, mak-
ing characteristics like positive 
predictive value more relevant 
than overall measures of dis-
crimination, such as the area 
under the receiver operator 
characteristics curve (AUROC).

MODEL 
ARCHITECTURE

Considering Potential 
Predictor Variables
How researchers decide on 
variables to include in a pre-

diction model (also referred to as “features”) is equally if not 
more important than the specific variables themselves. The 
large datasets increasingly used in biomedical research, such 
as those captured from EHRs, administrative systems, and 
high-dimensional “omics” platforms, include features that may 
number in the hundreds to thousands.

Not all features available in modern datasets are practical or 
effective choices. There is a trade-off between the number of 
features included in a model and its capacity to generalize. This 
risk becomes particularly important when considering that 
associations between predictor and outcome may be idiosyn-
cratic. A single center study may show bronchoscopies done on 
Tuesdays are predictive of lung cancer diagnosis, but this may 
simply reflect local practice in which the lung nodule clinic has 
access to the endoscopy suite on certain days.

As noted above, for clinical prediction modeling the only 
allowable predictor variables are those that will be known at 
the time the prediction is made. Consider a model to predict 
whether a chronic obstructive pulmonary disease (COPD) pa-
tient with pneumonia and respiratory failure in the emergency 
department will subsequently develop hypotension. Positive 
blood cultures may be highly predictive of this outcome, but 
blood cultures typically take hours to days to be reported. This 
variable cannot be included in a model intended to assist de-
cision making for a patient’s disposition from the emergency 
department because the information would never be available 
to decision-makers at the time they will use the prediction.

Authors should also consider how readily a variable can be 
obtained—including the cost, invasiveness, and risk of obtain-
ing it—as well as how ubiquitously it is encountered in routine 
practice. The growing pervasiveness of smartphones and other 
devices, which can calculate complex scores automatically, has 
lessened the premium on “simple” scores with few variables, but 
clear trade-offs between parsimony and accuracy remain. For 
example, a prediction model for lung cancer that uses smoking 
history alone may be easy to use in any setting but may under-
perform compared with one based on smoking history, an ex-
haustive occupational history, and whole genome sequencing.

Modern datasets may lack representation from demographic 
groups historically under-represented in biomedical research. 
Prediction models based on such datasets may lead to bias in 

Figure 1. The chronology of information is critical in prediction. A prediction, Ŷ, is made at time, tp, based on 
data collected up to and including that time, but no later. Ŷ is the estimate of Y, which cannot be observed until 
a time in the future. The times at which we can observe Y (rather than just Ŷ) fall within a prediction window 
(te_1 to te_2), which occurs after a certain amount of lead time has elapsed. The width of observation, lead time, 
and prediction intervals will influence the usefulness of any prediction model.
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real world applications (11). Relatedly, including dimensions 
such as race as predictors inherently reflects assumptions of 
difference that are often tenuous, particularly when modeling 
a physiologic response. The complex issues and history sur-
rounding prediction models creating or reinforcing biases are 
discussed elsewhere in-depth (11–15). Generally, we caution 
against arbitrarily including these variables in prediction mod-
els. Instead, we suggest careful consideration of what infor-
mation they add in the context of specific study questions. We 
discourage their inclusion without reasonable suspicion that 
they contribute important predictive information.

Procedures for Predictor Selection
Usually, we approach prediction problems with prior knowledge 
about what features are likely to be predictive. In these cases, can-
didate variables can (and usually should) be preselected based 
on theory or prior evidence. The converse approach, selecting 
variables solely on strength of association, leads to problems. 
For example, suppose we select variables to predict the risk of 
future intubation. Lactate level may not initially appear associ-
ated with intubation in a population that includes many patients 
with asthma and COPD in whom lactate may be elevated on the 
basis of high-dose inhaled β-agonist therapy. Lactate may in fact 
be highly associated with intubation in patients presenting with 
pulmonary sepsis and shock. Here, β-agonists are effect modi-
fiers: the predictive relationship between lactate and intubation 
depends on β-agonist use. This example is one of many reasons 
why experts have long recommended against using bivariable 
association to guide feature selection (16).

Another commonly used but problematic methodology is 
“stepwise” selection (17). Stepwise selection refers to procedures 
where decisions to include a predictor are based solely on p 
values associated with that predictor throughout multiple itera-
tions of a model. For example, a study that enters 20 candidate 
variables into a model and continuously removes those meeting 
a threshold (e.g., p > 0.10 or >0.05) until all remaining terms are 
“statistically significant” uses backward-selection. By deciding to 
include variables based on p values, stepwise selection essentially 
amounts to multiple comparisons without appropriate correc-
tion. Further, unlike prespecified models, where all potential 
relationships are grounded in plausibility, stepwise models have 
no “prior” about what to include, making them highly prone to 
overfitting. Overfitting occurs when a model contains too many 
variables for the dataset to support. This results in a close fit 
to the data on which it was trained, but poor generalization to 
other datasets (18), undermining a key criterion of useful pre-
diction. Any process that rigidly adheres to p value thresholds 
for variable selection poses similar risks of spurious conclusions 
(19, 20). In the vast majority of scenarios, p value based feature 
selection methods are strongly discouraged (21).

Underscoring the rationale to eschew stepwise and p value 
screening, modern statistical approaches to feature selection 
(e.g., penalized regression) avoid these pitfalls and can also 
inherently improve overall accuracy (22). For these reasons, 
TRIPOD guidelines explicitly recommend these alternative 
procedures for prediction studies (6). These methods have their 

own caveats and are comparatively more complex. Accordingly, 
they may not be amenable to all studies. Ultimately, the balance 
of prior knowledge about which factors are likely predictive and 
the need for data-driven discovery of novel predictors should 
guide a specific study’s approach to feature selection. Fully pre-
specified theory-based feature selection may be appropriate 
when there is extensive prior knowledge, whereas penalization 
methods may be preferred when prior knowledge is lacking or 
in discovery exercises. Table 1 presents an overview of feature 
selection techniques for statistical prediction models.

Finally, we note that the number of outcome events, not 
simply sample size, influences how many predictor terms can 
be included without overfitting. Large models (e.g., 50+ pre-
dictors) are often imposed on smaller datasets (e.g., n = 300,  
with 30 outcomes) that cannot support them. Methods to de-
termine how many predictors a model can accommodate are 
discussed elsewhere, and we encourage authors to consider 
what their datasets can actually support. For sample size guid-
ance, we direct readers to methodological papers based on the 
type of outcome being predicted—continuous (23, 24), bi-
nary (25, 26), or time-to-event (25)—and recommend authors 
clearly indicate how they determined whether their dataset 
could support the chosen model.

MODEL CONSTRUCTION
In addition to identifying predictor variables, prediction model 
development involves decisions about how to operationalize 
the predictors, define outcomes, handle missing data, and se-
lect a method to generate predictions.

Operationalizing Predictor Variables
One practice often employed in preprocessing data is to split con-
tinuous variables into dichotomous ones (27, 28). This practice 
risks discarding information and replacing it with assumptions 
that rarely have biological plausibility. For example, we might 
want to include respiratory rate (RR) in a model predicting the 
need for positive pressure ventilation. Consider four patients 
with RRs of 12, 29, 31, and 40, respectively. A logical interpre-
tation is that the first patient has the lowest (RR-attributable) 
risk, the second and third patients have higher but similar risk, 
and the fourth has the highest risk. Suppose we instead split 
the population into two groups: RR greater than or equal to 30 
and less than 30. This makes several illogical assumptions and 
discards useful predictive information, as described in Figure 2.

Investigators sometimes create categorical groupings be-
cause they suspect a nonlinear relationship (e.g., a threshold 
rather than a dose-response effect). Although using nonlinear 
terms in a prediction equation might better accommodate this 
relationship than categorizing continuous data, using a linear 
term to model a suspected “J-shaped” curve would also be in-
appropriate. These issues should underscore the importance 
of thinking about predictor relationships ahead of time when 
feasible.

Although avoiding categorization is generally preferred, 
thresholds may, at times, be useful to formulate prediction 
scores that can be easily calculated at the bedside. As with 
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other choices in prediction modeling, this involves trade-offs 
between usability and accuracy. For example, imposing thresh-
olds might be more reasonable if a score is intended as a simple 
and easily remembered tool but less so when deployed in an 
electronic risk calculator.

Specifying the Outcome
One of the most important steps in developing prediction 
models is to determine what precisely to predict. This sounds 
obvious, but confusion or misspecification here can lead 
to concerns about the model’s applicability. For example, a 

model predicting the onset of sepsis should specify whether 
the labels “sepsis” and “non-sepsis” are assigned based on In-
ternational Classification of Diseases (ICD) codes, Sequential 
Organ Failure Assessment scores derived from EHR data, ex-
pert opinion after manual chart reviews, or some other meth-
odology. Transparency is important, especially when surrogate 
endpoints are used. For instance, a model might use a blood 
culture order and a prescription for IV antibiotics as a proxy 
for infection. Readers should recognize that the model there-
fore predicts the proxy state, rather than state of interest di-
rectly, and that overlap of the two may vary.

TABLE 1. Approaches to Feature Selection in Prediction Models

Strategy Mechanics Pros Cons

Traditional methods   

  Full 
prespecification

Before constructing a 
model, authors pre-
specify exactly which 
predictors and interac-
tions will be included. 
All terms retained 
regardless of relation-
ship to the outcome.

All predictors grounded in plausibility 
(strong “priors”).

Less vulnerable to overfitting and 
dataset-specific idiosyncrasies.

Computationally simple.

Requires reliable prior knowledge about 
what factors are predictive.

Ideal theoretical model may exceed 
number of dimensions the dataset 
can reasonably support.

Models may be less accurate than those 
employing appropriate penalization or 
shrinkage methods.

Penalization methods   

  LASSO (L1) 
regularization

Imposes a “penalty” to 
bias predictor coeffi-
cients toward zero.

The penalty is a function 
of the coefficient’s  
absolute magnitude 
and a weight, λ.

Can set coefficients to zero: useful 
to identify a small subset of most 
predictive features in datasets with 
many candidate predictors.

Does not require prior knowledge 
about which features are pre-
dictive.

If correctly weighted, can enhance 
prediction accuracy separate from 
use in feature selection.

May exclude features that are  
moderately predictive, discarding  
valuable information.

May include implausible features and 
omit known predictive features.

Individual predictors difficult to interpret.
Performs poorly when predictors are 

highly correlated.
Performs poorly when there are more 

predictors than observations.
Requires internal cross-validation to 

estimate λ.
λ unstable in smaller datasets.
Computationally intensive.

  Ridge (L2) 
regularization

Imposes a “penalty” to 
bias predictor  
coefficients toward 
zero.

The penalty is a function 
of the coefficient’s 
squared magnitude 
and a weight, λ.

Computationally less intensive vs 
LASSO/ Elastic-Net.

Does not require prior knowledge 
about which features are  
predictive.

If correctly weighted, can enhance 
prediction accuracy; outperforms 
LASSO if predictors are correlated.

Not a true means of predictor selection: 
penalization increasingly mild below 
1.0 and unable to exclude features 
altogether.

Individual predictors difficult to interpret.
Requires internal cross-validation to 

estimate λ.
λ unstable in smaller datasets.

  Elastic-Net 
(Mixed L1-L2) 
regularization

Imposes a “penalty” 
to bias predictor 
coefficients toward 
zero.

The penalty function 
is a mix of both 
LASSO and 
Ridge, with a 
weight between 0 
(complete Ridge) 
and 1 (complete 
LASSO).

Can set coefficients to zero: can 
exclude nonpredictive features.

Better handles correlated 
predictors vs LASSO.

When more predictors 
than observations, better 
performance vs LASSO.

If correctly weighted, can enhance 
prediction accuracy separate 
from use in feature selection.

Does not require prior knowledge 
about which features are 
predictive.

May include implausible features and 
omit features already known to be 
predictive.

Requires estimation of the optimal 
balance between L1/L2.

Individual predictors difficult to 
interpret.

Requires internal cross-validation to 
estimate λ.

λ unstable in smaller datasets.
Computationally intensive.
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Authors should fully specify criteria used to adjudicate 
outcomes. Those criteria should consider ease of use, veracity, 
and consistency. For instance, ICD coding may be ubiqui-
tous in some jurisdictions, but practices for coding any given 
condition may differ between institutions. Last, the timing of 
the outcome must be clearly specified. The outcome must be 
known only after all predictor variables have been collected, 
ideally with lag time that respects the realities of clinical prac-
tice. A model that predicts the onset of clinical deterioration 24 
hours in advance is likely more useful than one that provides 
only 10 minutes of advanced warning.

Data Preprocessing
Missing data frequently complicate prediction modeling. This 
is especially true when models are built with existing datas-
ets, rather than those collected specifically for the purpose of 
model development. The former, though convenient, may con-
tain gaps where key variables were not routinely collected or 
reliably recorded. Missing data can introduce bias, especially if 
not missing completely at random. Suppose we want to predict 
bleeding risk during an inpatient stay, and choose to include 
the admission international normalized ratio (INR) as a pre-
dictor. Our dataset includes this measure for 65% of patients. Is 
the remaining 35% missing completely at random? Since clin-
ical presentation likely dictates whether the INR is measured 
at admission, the mere presence of an INR value (regardless of 
its result) carries information (29). If we include only patients 
with an admission INR measured, we may select a group with 
higher bleeding risk; these patients are likely on anticoagulants, 
or deemed by the clinician at high enough risk that an INR was 
ordered. By omitting patients without an INR we may bias the 
prediction model.

Several strategies can address missing data. The approach 
using only patients with complete data (complete case anal-
ysis) can introduce bias and decreases sample size. This prac-
tice is therefore discouraged (30). Another strategy is multiple 
imputation of missing values using methods described else-
where (31). The success of these approaches will depend on 
the methods used, the amount of missing data, and why the 
data are missing to begin with. Sometimes too much data 
are missing to support the proposed prediction modeling. 
Regardless of the methods chosen, the quantity of missing 

data, along with the methods used to deal with it, should be 
reported.

Other types of data preprocessing include the identification 
and removal of outliers, physiologically implausible values, or 
features that do not vary across patients and therefore con-
tribute no information. The methods used in these preprocess-
ing steps should be fully outlined (perhaps as a supplement), 
as they may introduce important biases in the ensuing models.

MODEL EVALUATION
Once developed, a prediction model must be evaluated to de-
termine how useful it might be, and under what circumstances 
it might be used (32). This requires appropriate validation and 
quantification of model performance.

Model Validation
Evaluating a model’s predictive performance can be helpful 
during derivation in the fine tuning of its variables. How-
ever, such evaluation does not constitute justification for the 
model’s adoption. This is because models overly adapted to the 
idiosyncrasies of a particular dataset may perform well in that 
dataset, despite having poor accuracy for new observations 
(33). Many of the pitfalls described above will lead to overly 
optimistic performance models that fail to generalize.

Validation refers to the process of confirming whether a pre-
diction model generalizes to data that were not used in its de-
velopment. Internal validation involves determining whether 
model performance is reproducible in the same underlying 
population (as distinct from the same specific sample) used to 
derive it (33). External validation determines whether a model 
is transportable by evaluating its performance in a population 
that is somehow distinct from the one used for derivation (33).

Generally, prediction models perform worse in new datas-
ets compared with the sample in which they were developed. 
Models that perform without large decrements in accuracy in 
new datasets are more likely to generalize to other contexts we 
might care about—for example, clinical practice. Conversely, 
substantial decrements in performance suggest the model is 
overfitted. Emerging frameworks evaluate both the magnitude 
of and reasons for performance degradation (34–36); such as 
the validation cohort being inherently different from the deri-
vation cohort (36). However, determining how much of a de-
crease in performance during validation is too much proves 
difficult and will likely depend on the specific study (35).

The typical lifecycle of a prediction model thus involves 
progression through various stages of derivation and validation. 
Often, initial model descriptions may be based on validation in ar-
chival datasets. When entirely separate datasets are not available, a 
common compromise approach is to split a single dataset into two 
parts: a derivation cohort, and a separate validation cohort that is 
not used in developing the model itself. There are several strategies 
to handle a single dataset in this way, each with their own draw-
backs and benefits (Supplemental Table 1, Supplemental Digital 
Content 1, http://links.lww.com/CCM/F343) (37). We acknowl-
edge that the distinction between internal and external valida-
tion is not always concrete, and will depend on study context. 

Figure 2. Problems with categorizing continuous variables. Consider 
the example of splitting respiratory rate (RR) values into “high” and “low” 
based on a cut-off of 30 breaths per minute. Note this makes several 
assumptions, namely: 1) that there is no difference between a RR of 12 
and a RR of 29 (points A and B); 2) that there’s no difference between a 
RR of 31 and a RR of 40 (points C and D); and 3) that RRs of 29 and 30 
are categorically different (points B and C).

http://links.lww.com/CCM/F343
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Nevertheless, a compelling validation must use the exact same 
model obtained from the derivation exercise. Retraining on ex-
ternal data will yield an entirely new model, potentially lead-
ing to the same risks of overfitting that validation is meant to 
overcome.

In the near future, we may see a new approach in which 
models are deliberately re-trained on local data (38). This 
strategy might improve accuracy in the specific venue 
where the method is applied and may become more fea-
sible as more health systems accrue the large datasets and 

TABLE 2. Selected Measures to Evaluate Prediction Model Performance

Measure Property Meaning Interpretation Uses Pitfalls/Misuses

Scaled 
Brier’s 
Score

Explained 
variance 
(discrimination 
+ calibration)

Squared difference 
of observed 
vs predicted 
outcomes, 
standardized to 
the score of a 
noninformative 
model.

Represents total 
variation in event 
the model cannot 
explain.

Higher is better: 
1 = all variation 
explained by 
model, 0 = no 
variation explained 
by model.

Highly informative 
summary statistic.

Represents overall 
prediction 
performance.

Does not directly reflect 
predictive value of 
individual predictions.

Influenced by 
performance in 
irrelevant regions of 
the model.

AUROC 
(C-statistic)

Discrimination The probability a true 
event will have higher 
predicted probability 
than a nonevent 
across all possible 
threshold values 
(rank order test).

Reflects overall ac-
curacy in discrimi-
nating those that 
experienced the 
outcome from those 
that did not.

Higher is better: 1.0 
= perfect discrimin-
ation; 0.5 = nonin-
formative prediction.

May be useful to visu-
ally assess perform-
ance over range of 
possible thresholds.

Potentially suitable for 
comparing bench-
marking models 
that use prediction 
frameworks.

Not relevant for  
clinical decisions  
(retrospective).

Biased when events occur 
infrequently.

Only assesses discrimin-
ation; incomplete view 
of performance.

Influenced by performance 
in irrelevant regions of 
the model.

Area under  
precision  
recall curve

Discrimination The average prob-
ability that a positive 
prediction will be a 
true event across all 
possible sensitivities 
(i.e., the average pre-
cision).

Reflects overall prob-
ability that any given 
positive prediction 
will become a true 
event.

Higher is better: 1.0 =  
perfect precision; 
the overall event fre-
quency = noninform-
ative prediction.

Avoids the rare event 
bias of AUROCs.

Reflects positive pre-
dictive value and 
sensitivity.

Like AUROC, useful 
to visualize perform-
ance over range of 
possible thresholds.

Only assesses discrimin-
ation; incomplete view 
of performance.

Influenced by performance 
in irrelevant regions of 
the model.

Interpretation not intuitive.

Hosmer– 
Lemeshow 
Test

Calibration Observed probability vs 
predicted probability 
across deciles of pre-
diction.

Statistical hypothesis 
test—the null  
hypothesis is that 
the model fits the 
data.

At high test statistics 
(low p values), reject 
the null.

Easily represented 
and interpreted 
graphically.

Graphing is itself use-
ful to show specific 
regions of risk mis-
specification.

Arbitrary grouping may 
poorly reflect risk  
distributions.

May not detect subtle  
mis-calibrations in 
smaller datasets.

May be overly conservative 
in larger datasets.

Only assesses calibration; 
incomplete view of  
performance.

Net benefit 
(decision 
curve 
analysis)

Utility Number of true 
positives minus 
weighted number 
of false positives, 
divided by sample 
size, plotted over 
range of threshold 
probabilities. 
Weight is the ratio 
of harm to benefit.

Higher net benefit 
indicates more 
utility at a given 
probability 
threshold.

Allows (unequal) 
weighting of false 
positives vs false 
negatives.

Reflects the 
usefulness of any 
individual model 
prediction.

How “usefulness” is 
operationally defined 
is subjective.

AUROC = area under receiver operator characteristics curve.
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computing infrastructure needed to support such a strategy. 
Local implementations of any given method may differ in 
the features selected, and the weights assigned within each 
local model. In these cases, the prediction method must 
be shown to generalize, rather than the model itself (38). 
Nonetheless, validation of the specific method under study 
is still necessary.

While precise approaches can vary between applications, 
the most important element of any validation is that the mod-
el’s performance is interrogated among observations that were 
not used in its development or fine tuning. An appropriate val-
idation is the most critical component of assessing model per-
formance. Without it, even models that appear highly accurate 
are simply quantitative hypotheses.

Performance Metrics
There are numerous ways to quantify a prediction model’s per-
formance (Table 2). These measures are reviewed in detail else-
where (39). Generally, the appropriateness of any given metric 
will depend on how we intend to use a model and the nature 
of the data it describes. For binary outcomes, the often-used 
AUROC (also known as the C-statistic) measures discrimina-
tion—the ability to separate events from nonevents. Indeed 
prediction models that cannot discriminate are useless, but 
when discrimination is reasonable, usefulness may become de-
pendent on calibration, which is the ability to specify the prob-
ability of the outcome correctly (40). Separating two patients 

with 1% versus 5% risk has different implications than sepa-
rating patients with 5% versus 25% risk, yet both correspond 
to a five-fold risk difference.

When outcomes occur infrequently, measures of overall accu-
racy can have misleadingly strong discrimination if they priori-
tize specificity: if only 5% of patients experience an outcome, a 
model that predicts zero outcomes can attain 95% accuracy (41). 
Sensitivity and specificity, reflected by AUROC, are inherently ret-
rospective properties (the number of correct predictions among 
cases versus noncases, respectively). This may be appropriate for 
benchmarking indices (e.g., severity of illness scoring), but bed-
side prediction models are better judged by properly contextual-
ized positive and negative predictive values (how many correctly 
predicted outcomes among the positive and negative predictions, 
respectively). These measures also have caveats; predictive values 
vary with the underlying outcome prevalence and therefore can 
vary considerably between populations.

Priorities for prediction are context-specific but invariably 
involve trade-offs determined by the potential consequences 
of false positives (i.e., overtreatment), and false negatives (i.e., 
missed cases). For example, in predicting poor neurologic re-
covery following cardiac arrest, we may wish to know the per-
formance at a false positive rate of 0; we never want to wrongly 
predict a poor outcome, as this is likely to lead to the with-
drawal of life-sustaining therapies. In other cases, it may be 
more important to accurately predict as many positive out-
comes as possible, with less regard to “false alarms.”

TABLE 3. Key Reporting Metrics for Prediction Models (Adapted From the Transparent 
Reporting of a Multivariable Prediction Model For Individual Prognosis or Diagnosis 
Checklist) (5)

Domain Key Reporting Elements

Data source Were data collected prospectively for this purpose, or repurposed from an archival dataset? Wherever 
possible, the data used should be made available to readers.

Participants Which patients were included in the study? Were separate populations used for model derivation and valid-
ation? How many patients were included in each of these groups? A “Table 1” describing relevant clinical 
features is useful.

Outcome Specific details on how the outcome was defined.

Predictors A specific accounting of the predictor variables included in the final model, along with the method by which 
these variables were selected.

Missing data How much data were missing from the predictors and from the outcome? How was missing data handled?

Model specification What sort of model was used (e.g., linear regression, random forest)? The final model itself should be reported 
with as much detail as possible, including specific equations/variables. Whenever possible (particularly in 
the case of machine learning models), the code used should be provided in full such that others can repli-
cate the analyses.

Model structure The full model equation should be reported when applicable (e.g., statistical models), along with equations 
required to interpret results (e.g., the baseline hazard function in a time-to-event model).

Validation How was the model validated (internal vs external)? If internal validation only was performed, how was the 
dataset split?

Model performance Performance measures should be tailored to the intended purpose of the model but generally should 
include a measure of discrimination (e.g.. area under receiver operator characteristics curve or area 
under precision recall curve), a measure of calibration (e.g.. Hosmer–Lemeshow, scaled Brier Score), and 
clinically relevant performance (e.g.. positive predictive value, negative predictive value) as indicated.
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Interpreting Performance
It is very rare that a novel prediction model does not require  
comparison to an existing one. We should seek these compari-
sons because it is hard to interpret a model’s usefulness in isola-
tion. A prediction model that discriminates with 75% accuracy 
might be useful if currently used frameworks are little better 
than a coin flip. Another model with 80% accuracy might not 
be useful if clinical judgment is right 90% of the time. Simi-
larly, a model might accurately predict the onset of a condition 
at a given time, but this will only be useful if the diagnosis has 
not already been made. Considerations beyond standard per-
formance metrics may therefore be important. For example, a 
model that accurately predicts the onset of infection may have 
limited clinical usefulness if the majority of patients identified 
are already receiving antibiotics at the time of the alert.

In the era of big data, the distinction between clinical and 
statistical significance becomes particularly important. The 
width of CIs and the size of p values are both inversely propor-
tional to the sample size of a dataset. As models developed from 
datasets with thousands of patients become more common, it 
is important to consider what a “significant” difference really 
means. In such datasets, a complex, 40-variable model with 
85% accuracy may well be statistically distinguishable from a 
simple, two-variable model with 84% accuracy. We must then 
ask whether that difference is meaningful, and worth all the 
added complexity.

Additional Considerations
We encourage readers to review additional considerations re-
lated to assessing model bias, competing risks, measurement 
error, algorithm generalization, and so-called “modifiable 
risk factors” in the accompanying Supplemental Materials 

(Supplemental Digital Content 1, http://links.lww.com/
CCM/F343).

GUIDANCE FOR REPORTING
Table 3 provides key components that must be present for 
readers to properly evaluate a prediction model. More detailed 
guidance for reporting prediction modeling studies is widely 
available. We encourage authors to refer to the TRIPOD check-
list (https://www.tripod-statement.org) and ensure they in-
clude all recommended elements. Studies that leverage EHR 
derived datasets present unique considerations, and for these, 
we also encourage authors to refer to the Reporting of stud-
ies Conducted using Observational Routinely-collected Data 
(RECORD) checklist (https://www.record-statement.org). In-
cluding these checklists in submissions is highly recommended. 
In general, reporting should be as transparent as possible, and 
should include full specification of statistical models and their 
diagnostics. Though making data and statistical code available 
is not required at most journals, it is certainly encouraged.

FINAL COMMENTS—CONSIDERING IMPACT
Above, we outline what prediction models do, and offer rec-
ommendations for their use (summarized in Table 4). How-
ever, considering why a new prediction model is needed may 
supersede all these considerations. Many published predic-
tion models will never be used. Therefore, our final guidance 
is to consider what unmet need a prediction model confronts. 
Perhaps a model has novelty, addressing diseases or outcomes 
where no data currently exist. Perhaps it shows clinical use-
fulness, flagging occultly high-risk patients or improving dis-
crimination compared with current practice. Perhaps a model 

TABLE 4. Summary of Guidance for Prediction Models 

Recommended Practices Cautions

Consider competing priorities of precision, parsimony, and 
transparency when approaching a prediction task.

Prediction frameworks should not be used to make causal 
inferences.

Think carefully about the prediction’s intended purpose and priori-
tize feature selection elements as appropriate.

Using p values from bivariable comparisons or stepwise proce-
dures to select predictors leads to bias and overfitting.

Report the prevalence and handling of missing data; consider 
steps other than case exclusion to address missing data.

The size of a dataset, as well as the number of outcomes it con-
tains, limit the number of predictor variables that the model can 
accommodate.

Consider the expected nature of the relationships between pre-
dictors and the outcome (e.g., linear, exponential, etc.).

Categorizing continuous variables can lead to loss of information.

Conduct external validation to demonstrate a model can gener-
alize to new observations.

External validation should use the same model used to report the 
internal performance; avoid retraining on the external dataset.

Seek reasonable comparators other than “no model” when evalu-
ating model performance.

Relying on the area under receiver operator characteristics curve 
alone can lead to an incomplete understanding of a model’s 
performance.

Follow appropriate reporting guidelines such as Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis (TRIPOD) and Reporting of studies 
Conducted using Observational Routinely-collected Data 
(RECORD).

 

http://links.lww.com/CCM/F343
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facilitates enrolling enriched populations in clinical trials, or 
provides an administrative index to make institutional com-
parisons equitable. We challenge authors to reflect on how their 
models will benefit patients both when designing their studies 
and preparing their manuscripts. For example, do authors of a 
bedside tool now plan to use the model in their own practice?
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