1,000 research outputs found

    Sub-nanometer free electrons with topological charge

    Full text link
    The holographic mask technique is used to create freely moving electrons with quantized angular momentum. With electron optical elements they can be focused to vortices with diameters below the nanometer range. The understanding of these vortex beams is important for many applications. Here we present a theory of focused free electron vortices. The agreement with experimental data is excellent. As an immediate application, fundamental experimental parameters like spherical aberration and partial coherence are determined.Comment: 4 pages, 5 figure

    First principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets

    Full text link
    Recently it was demonstrated (Schattschneider et al., Nature 441 (2006), 486), that an analogue of the X-ray magnetic circular dichroism (XMCD) experiment can be performed with the transmission electron microscope (TEM). The new phenomenon has been named energy-loss magnetic chiral dichroism (EMCD). In this work we present a detailed ab initio study of the chiral dichroism in the Fe, Co and Ni transition elements. We discuss the methods used for the simulations together with the validity and accuracy of the treatment, which can, in principle, apply to any given crystalline specimen. The dependence of the dichroic signal on the sample thickness, accuracy of the detector position and the size of convergence and collection angles is calculated.Comment: 9 pages, 6 figures, submitted to Physical Review

    Site-specific ionisation edge fine-structure of Rutile in the electron microscope

    No full text
    Combined Bloch-wave and density functional theory simulations are performed to investigate the effects of different channelling conditions on the fine-structure of electron energy-loss spectra. The simulated spectra compare well with experiments. Furthermore, we demonstrate that using this technique, the site-specific investigation of atomic orbitals is possible. This opens new possibilities for chemical analyses

    A novel vortex generator and mode converter for electrons

    Full text link
    A mode converter for electron vortex beams is described. Numerical simulations, confirmed by experiment, show that the converter transforms a vortex beam with topological charge m=±1m=\pm 1 into beams closely resembling Hermite-Gaussian HG10_{10} and HG01_{01} modes. The converter can be used as a mode discriminator or filter for electron vortex beams. Combining the converter with a phase plate turns a plane wave into modes with topological charge m=±1m=\pm 1. This combination serves as a generator of electron vortex beams of high brilliance

    Theory and applications of free-electron vortex states

    Full text link
    Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.Comment: 87 pages, 34 figure

    Experimental application of sum rules for electron energy loss magnetic chiral dichroism

    Full text link
    We present a derivation of the orbital and spin sum rules for magnetic circular dichroic spectra measured by electron energy loss spectroscopy in a transmission electron microscope. These sum rules are obtained from the differential cross section calculated for symmetric positions in the diffraction pattern. Orbital and spin magnetic moments are expressed explicitly in terms of experimental spectra and dynamical diffraction coefficients. We estimate the ratio of spin to orbital magnetic moments and discuss first experimental results for the Fe L_{2,3} edge.Comment: 11 pages, 2 figure

    Long term stability and infectivity of herpesviruses in water

    Get PDF
    For viruses to utilize environmental vectors (hard surfaces, soil, water) for transmission, physical and chemical stability is a prerequisite. There are many factors including pH, salinity, temperature, and turbidity that are known to contribute to the ability of viruses to persist in water. Equine herpesvirus type-1 (EHV-1) is a pathogenic alphaherpesvirus associated with domestic horses and wild equids. EHV-1 and recombinants of EHV-1 and EHV-9 are able to cause infections in non-equid animal species, particularly in captive settings. Many of the captive non-equid mammals are not naturally sympatric with equids and do not share enclosures, however, in many cases water sources may overlap. Similarly, in the wild, equids encounter many species at waterholes in times of seasonal drought. Therefore, we hypothesized that EHV-1 is stable in water and that water may act as a vector for EHV-1. In order to establish the conditions promoting or hindering EHV-1 longevity, infectivity and genomic stability in water; we exposed EHV-1 to varied water environments (pH, salinity, temperature, and turbidity) in controlled experiments over 21 days. The presence and infectivity of the virus was confirmed by both qPCR and cell culture experiments. Our results show that EHV-1 remains stable and infectious under many conditions in water for up to three weeks
    • …
    corecore