10 research outputs found

    The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR

    Get PDF
    Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COPII) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COPII components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane

    NOTUM from Apc-mutant cells biases clonal competition to initiate cancer

    Get PDF
    The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer

    To degrade or not to degrade:mechanisms and significance of endocytic recycling

    Get PDF

    Modular concept for municipal water management in the Kharaa River Basin, Mongolia

    No full text
    Mongolia is a country with limited water resources but a rising water consumption due to an increasing population, urbanization and economic growth, which is largely driven by a booming mining sector. These processes do not only lead to greater water abstractions, but also contribute to water quality and aquatic ecosystem deterioration. Urban areas play a key role in this context, since water abstractions and waste water generation are concentrated here. However, there are considerable disparities between urban centers with centralized water supply and sewage infrastructures and peri-urban regions. Where existant, infrastructures for drinking water supply and wastewater collection and treatment are often in a poor state of maintenance, leading to the contamination of groundwater and surface water bodies with pathogens, nutrients, and other chemical substances. This paper presents components of a modular concept for urban water management at the example of Darkhan Uul Ai mag, which were developed and pilot-tested in the context of a project aiming at the development and implementation of an integrated water resources management (IWRM) for the North Mongolian Kharaa River Basin. It is discussed how solutions were adapted to local situations, considering both sustainable resource utilization and local acceptance

    EGFR Trafficking in Physiology and Cancer

    No full text
    Signaling from the epidermal growth factor receptor (EGFR) elicits multiple biological responses, including cell proliferation, migration, and survival. Receptor endocytosis and trafficking are critical physiological processes that control the strength, duration, diversification, and spatial restriction of EGFR signaling through multiple mechanisms, which we review in this chapter. These mechanisms include: (i) regulation of receptor density and activation at the cell surface; (ii) concentration of receptors into distinct nascent endocytic structures; (iii) commitment of the receptor to different endocytic routes; (iv) endosomal sorting and postendocytic trafficking of the receptor through distinct pathways, and (v) recycling to restricted regions of the cell surface. We also highlight how communication between organelles controls EGFR activity along the endocytic route. Finally, we illustrate how abnormal trafficking of EGFR oncogenic mutants, as well as alterations of the endocytic machinery, contributes to aberrant EGFR signaling in cancer

    To degrade or not to degrade: mechanisms and significance of endocytic recycling

    No full text
    corecore