369 research outputs found

    Hypernovae and light dark matter as possible Galactic positron sources

    Full text link
    The electron-positron annihilation source in the Galactic center region has recently been observed with INTEGRAL/SPI, which shows that this 511 keV source is strong and its extension is consistent with the Galactic bulge geometry. The positron production rate, estimated to more than 1043^{43} per second, is very high and raises a challenging question about the nature of the Galactic positron source. Commonly considered astrophysical positron injectors, namely type Ia supernovae are rare events and fall short to explain the observed positron production rate. In this paper, we study the possibility of Galactic positron production by hypernovae events, exemplified by the recently observed SN2003dh/GRB030329, an asymmetric explosion of a Wolf-Rayet star associated with a gamma-ray burst. In these kinds of events, the ejected material becomes quickly transparent to positrons, which spread out in the interstellar medium. Non radioactive processes, such as decays of heavy dark matter particles (neutralinos) predicted by most extensions of the standard model of particle physics, could also produce positrons as byproducts. However they are expected to be accompanied by a large flux of high-energy gamma-rays, which were not observed by EGRET and ground based Tcherenkov experiments. In this context we explore the possibility of direct positron production by annihilation of light dark matter particles.Comment: 8 pages, 0 figures, 35th COSPAR, accepted in July 2005 by Elsevier Science for publication in "Advances in Space Research

    The ECLAIRs telescope onboard the SVOM mission for gamma-ray burst studies

    Full text link
    The X- and gamma-ray telescope ECLAIRs onboard the future mission for gamma-ray burst studies SVOM (Space-based multi-band astronomical Variable Objects Monitor) is foreseen to operate in orbit from 2013 on. ECLAIRs will provide fast and accurate GRB triggers to other onboard telescopes, as well as to the whole GRB community, in particular ground-based follow-up telescopes. With its very low energy threshold ECLAIRs is particularly well suited for the detection of highly redshifted GRB. The ECLAIRs X- and gamma-ray imaging camera (CXG), used for GRB detection and localization, is combined with a soft X-ray telescope (SXT) for afterglow observations and position refinement. The CXG is a 2D-coded mask imager with a 1024 cm2^2 detection plane made of 80×\times80 CdTe pixels, sensitive from 4 to 300 keV, with imaging capabilities up to about 120 keV and a localization accuracy better than 10 arcmin. The CXG permanently observes a 2 sr-wide field of the sky and provides photon data to the onboard science and triggering unit (UTS) which detects GRB by count-rate increases or by the appearance of a new source in cyclic sky images. The SXT is a mirror focusing X-ray telescope operating from 0.3 to 2 keV with a sensitivity of 1 mCrab for 100 s observations. The spacecraft slews within \simeq3 min in order to place the GRB candidate into the 23×\times23 arcmin2^2 field of view of the SXT, after which it refines the GRB position to about 10 arcsec. GRB alerts are transmitted to ground-observers within tens of seconds via a VHF network and all detected photons are available hours later for detailed analysis. In this paper we present the ECLAIRs concepts, with emphasis on the expected performances.Comment: on behalf of the ECLAIRs collaboration. Proceedings of Gamma-Ray Bursts 2007 conference, Santa Fe, USA, 5-9 November 2007. Published in AIP conf. proc. 1000, 581-584 (2008

    Integral and Light Dark Matter

    Full text link
    The nature of Dark Matter remains one of the outstanding questions of modern astrophysics. The success of the Cold Dark Matter cosmological model argues strongly in favor of a major component of the dark matter being in the form of elementary particles, not yet discovered. Based on earlier theoretical considerations, a possible link between the recent SPI/INTEGRAL measurement of an intense and extended emission of 511 keV photons (positron annihilation) from the central Galaxy, and this mysterious component of the Universe, has been established advocating the existence of a light dark matter particle at variance with the neutralino, in general considered as very heavy. We show that it can explain the 511 keV emission mapped with SPI/INTEGRAL without overproducing undesirable signals like high energy gamma-rays arising from π\pi^\circ decays, and radio synchrotron photons emitted by high energy positrons circulating in magnetic fields. Combining the annihilation line constraint with the cosmological one (i.e. that the relic LDM energy density reaches about 23% of the density of the Universe), one can restrict the main properties of the light dark matter particle. Its mass should lie between 1 and 100 MeV, and the required annihilation cross section, velocity dependent, should be significantly larger than for weak interactions, and may be induced by the virtual production of a new light neutral spin 1 boson UU. On astrophysical grounds, the best target to validate the LDM proposal seems to be the observation by SPI/INTEGRAL and future gamma ray telescopes of the annihilation line from the Sagittarius dwarf galaxy and the Palomar-13 globular cluster, thought to be dominated by dark matter.Comment: 7 pages, 0 figures. To appear in the Proceedings of the 5th INTEGRAL Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munich, German

    Continuum gamma-ray emission from light dark matter positrons and electrons

    Get PDF
    The annihilation of light dark matter was recently advocated as a possible explanation of the large positron injection rate at the Galactic center deduced from observations by the SPI spectrometer aboard INTEGRAL. The modelling of internal Bremsstrahlung and in-flight annihilation radiations associated to this process drastically reduced the mass range of this light dark matter particle. We estimate critically the various energy losses and radiations involved in the propagation of the positron before its annihilation --in- flight or at rest. Using a simple model with mono-energetic positrons injected and confined to the Galactic bulge, we compute energy losses and gamma-ray radiations caused by ionization, Bremsstrahlung interactions as well as in-flight and at rest annihilation and compare these predictions to the available observations, for various injection energies. Confronting the predictions with observations by the CGRO/EGRET, CGRO/COMPTEL, INTEGRAL/SPI and INTEGRAL/IBIS/ISGRI instruments, we deduce a mass upper bound of 3 to 7.5 MeV/c^2 for the hypothetical light dark matter particle. The most restrictive limit is in agreement with the value previously found by Beacom and Yuksel and was obtained under similar assumptions, while the 7.5 MeV/c^2 value corresponds to more conservative choices and to a partially ionized propagation medium. We stress how the limit depends on the degree of ionization of the propagation medium and how its precision could be improved by a better appraisal of data uncertainties.Comment: Revision of the section dedicated to the observational interpretation. 11 pages, 8 figures, 1 table. Accepted for publication in Phys. Rev.

    SVOM pointing strategy: how to optimize the redshift measurements?

    Full text link
    The Sino-French SVOM mission (Space-based multi-band astronomical Variable Objects Monitor) has been designed to detect all known types of gamma-ray bursts (GRBs) and to provide fast and reliable GRB positions. In this study we present the SVOM pointing strategy which should ensure the largest number of localized bursts allowing a redshift measurement. The redshift measurement can only be performed by large telescopes located on Earth. The best scientific return will be achieved if we are able to combine constraints from both space segment (platform and payload) and ground telescopes (visibility).Comment: Proceedings of Gamma-Ray Bursts 2007 conference, Santa Fe, USA, 5-9 November 2007. Published in AIP conf. proc. 1000, 585-588 (2008

    Stereotactic body radiotherapy for recurrent hemoptysis due to chronic pulmonary aspergillosis: a case report and systematic review of the literature.

    Get PDF
    PURPOSE Chronic pulmonary aspergillosis (CPA) can manifest as fungus balls in preexisting cavities of lung parenchyma and recurrent hemoptysis is among the most frequent complications. Radiotherapy can be considered for treatment-refractory aspergilloma and severe hemoptysis. To the best of our knowledge, we present the first application of stereotactic body radiotherapy (SBRT) for a pulmonary aspergilloma in a patient with limited functional lung capacity. The topic was further expanded on with a systematic review of the literature addressing the implementation of radiotherapy in CPA patients. CASE REPORT A 52-year-old man presented with recurring and treatment-refractory hemoptysis caused by chronic cavitary aspergillosis localized in the left lower lobe. We applied SBRT on two consecutive days with a total dose of 16 Gy. Hemoptysis frequency decreased to a clinically insignificant level. SYSTEMATIC REVIEW We performed a systematic search of the literature in line with the PRISMA statement. The initial PubMed search resulted in 230 articles, of which 9 were included. RESULTS The available literature contained 35 patients with CPA who received radiotherapy. Dose fractionation usually ranged from 2 to 4 Gy per fraction, applied almost exclusively in conventional two-dimensional (2D) techniques. There is no report of SBRT usage in such a scenario. Most cases report a positive treatment response after irradiation. CONCLUSION The presented case demonstrates long-term clinical stability after SBRT for recurrent hemoptysis due to pulmonary aspergilloma. The systematic literature search revealed that concept definition is still uncertain, and further work is necessary to establish radiotherapy in clinical practice

    The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations

    Full text link
    Gamma-ray bursts (GRB), at least those with a duration longer than a few seconds are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore in 2009 ECLAIRs is expected to be the only space borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground based spectroscopic telescopes available by then. A "Phase A study" of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the "Myriade" family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in the 4 to 50 keV energy band, together with a soft X-ray camera for onboard position refinement to 1 arcmin. The ground-based optical robotic telescopes will detect the GRB prompt/early afterglow emission and localize the event to arcsec accuracy, for spectroscopic follow-up observations.Comment: 7 pages, 1 figure, proceedings of the conference "New Developments in Photodetection", Beaune (France), June 25005. Submitted to NIM-A (Elsevier Science

    The digital data processing concepts of the LOFT mission

    Full text link
    The Large Observatory for X-ray Timing (LOFT) is one of the five mission candidates that were considered by ESA for an M3 mission (with a launch opportunity in 2022 - 2024). LOFT features two instruments: the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class instrument with approximately 15 times the collecting area of the largest timing mission so far (RXTE) for the first time combined with CCD-class spectral resolution. The WFM will continuously monitor the sky and recognise changes in source states, detect transient and bursting phenomena and will allow the mission to respond to this. Observing the brightest X-ray sources with the effective area of the LAD leads to enormous data rates that need to be processed on several levels, filtered and compressed in real-time already on board. The WFM data processing on the other hand puts rather low constraints on the data rate but requires algorithms to find the photon interaction location on the detector and then to deconvolve the detector image in order to obtain the sky coordinates of observed transient sources. In the following, we want to give an overview of the data handling concepts that were developed during the study phase.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446

    Hypernovae/GRB in the Galactic Center as possible sources of Galactic Positrons

    Full text link
    The observation of a strong and extended positron-electron line annihilation emission in the central regions of the Galaxy by INTEGRAL-SPI, consistent with the Galactic bulge geometry, without any counterpart in the gamma-ray range, neither at high energy nor in the 1809 keV 26^{26}Al decay line, is challenging. Leaving aside the geometrical question, we address the problem of the adequate positron sources, showing the potentiality of a new category of SN Ic, exemplified by SN2003dh, which is associated to a gamma-ray burst. This kind of supernova/hypernova/GRB event is interpreted as the result of a bipolar Wolf-Rayet explosion, which produces a large amount of 56^{56}Ni and ejects it at high velocity along the rotation axis. The bulk of positrons resulting from 56^{56}Co decay escapes in the surrounding medium due to the rapid thinning of the ejecta in the polar direction. We show that a rate of about 0.02 SN2003dh-like events per century in the central region of the Galaxy is sufficient to explain the positron flux detected by INTEGRAL-SPI. In order to explain this flux by SN Ia events alone, a rate of 0.5 per century is necessary, much higher than indicated by Galactic evolutionary models applied to the bulge. Further observations of late light curves of SNe Ia and SNe Ic in the bulge of spiral galaxies, together with 3D hydrodynamic calculations of anisotropic ejections of 56^{56}Ni in SN Ic/GRB events, will allow to estimate the separate contributions of SNe Ia and SNe Ic to positron injection.Comment: 7 pages, 0 figures, accepted for publication in Astrophysical Journal Letters, 2003 12 0
    corecore