21 research outputs found
Enhancement of Late Successional Plants on Ex-Arable Land by Soil Inoculations
Restoration of species-rich grasslands on ex-arable land can help the conservation of biodiversity but faces three big challenges: absence of target plant propagules, high residual soil fertility and restoration of soil communities. Seed additions and top soil removal can solve some of these constraints, but restoring beneficial biotic soil conditions remains a challenge. Here we test the hypotheses that inoculation of soil from late secondary succession grasslands in arable receptor soil enhances performance of late successional plants, especially after top soil removal but pending on the added dose. To test this we grew mixtures of late successional plants in arable top (organic) soil or in underlying mineral soil mixed with donor soil in small or large proportions. Donor soils were collected from different grasslands that had been under restoration for 5 to 41 years, or from semi-natural grassland that has not been used intensively. Donor soil addition, especially when collected from older restoration sites, increased plant community biomass without altering its evenness. In contrast, addition of soil from semi-natural grassland promoted plant community evenness, and hence its diversity, but reduced community biomass. Effects of donor soil additions were stronger in mineral than in organic soil and larger with bigger proportions added. The variation in plant community composition was explained best by the abundances of nematodes, ergosterol concentration and soil pH. We show that in controlled conditions inoculation of soil from secondary succession grassland into ex-arable land can strongly promote target plant species, and that the role of soil biota in promoting target plant species is greatest when added after top soil removal. Together our results point out that transplantation of later secondary succession soil can promote grassland restoration on ex-arable land
Distribution maps of vegetation alliances in Europe
Aim
The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe.
Location
Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries.
Methods
We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit.
Results
Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet.
Conclusions
The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps
What’s in a hearth? Seeds and fruits from the Neolithic fishing and fowling camp at Bergschenhoek, The Netherlands, in a wider context
This paper presents new results from the Early Neolithic Dutch wetland site of Bergschenhoek (ca. 4200 cal b. c., Swifterbant Culture), which are compared with finds from similar features and sites. The data indicate the presence of predominantly eutrophic, nutrient-rich reed and forb vegetation and suggest the preparation of meals consisting of fish and fruits. The finds from the hearth, dominated by uncarbonised remains of wetland taxa, form a remarkable part of the find assemblage. Therefore, the discussion concerns assemblages, deposition processes and interpretations of uncarbonised and carbonised finds from hearths at comparable, contemporary sites. The wide variation of macroremains assemblages of hearths indicates that plant deposition in hearths is understood only partly and remains a topic for further research.Peer reviewe
A review of prehistoric and early historic mainland salt marsh vegetation in the northern-Netherlands based on the analysis of plant macrofossils
<p>The article presents an overview of archaeobotanical research on artificial dwelling mounds, so-called 'terps', in the northern-Netherlands. A total of 40 studies carried out over the past 40 years is evaluated. The vegetation diversity in the area as well as the differences with the present marsh are studied. Seriation, Principal Component Analysis and Sorensen similarity indices are used to assess the diversity of both individual samples and sites. For comparison with the present marshes, an index based on the TMAP vegetation typology was defined. Based on these methods, a selection of the individual samples was analyzed phytosociologically. It is found that all samples represent a mixture of vegetation types, but that the salt marsh species are a constant factor. The variation in the sample composition is not related to their dating, except for some of the latest samples that reflect the earliest endikements. Great similarity to the present marshes is found, but the analysis also testifies of a landscape profoundly disturbed by human activities throughout history.</p>