4,427 research outputs found
Empirical logic of finite automata: microstatements versus macrostatements
We compare the two approaches to the empirical logic of automata. The first,
called partition logic (logic of microstatements), refers to experiments on
individual automata. The second one, the logic of simulation (logic of
macrostatements), deals with ensembles of automata.Comment: late
Revealing the Exciton Fine Structure in PbSe Nanocrystal Quantum Dots
We measure the photoluminescence (PL) lifetime, , of excitons in
colloidal PbSe nanocrystals (NCs) at low temperatures to 270~mK and in high
magnetic fields to 15~T. For all NCs (1.3-2.3~nm radii), increases
sharply below 10~K but saturates by 500~mK. In contrast to the usual picture of
well-separated ``bright" and ``dark" exciton states (found, e.g., in CdSe NCs),
these dynamics fit remarkably well to a system having two exciton states with
comparable - but small - oscillator strengths that are separated by only
300-900 eV. Importantly, magnetic fields reduce below 10~K,
consistent with field-induced mixing between the two states. Magnetic circular
dichroism studies reveal exciton g-factors from 2-5, and magneto-PL shows
10\% circularly polarized emission.Comment: To appear in Physical Review Letter
On the Canonical Reduction of Spherically Symmetric Gravity
In a thorough paper Kuchar has examined the canonical reduction of the most
general action functional describing the geometrodynamics of the maximally
extended Schwarzschild geometry. This reduction yields the true degrees of
freedom for (vacuum) spherically symmetric general relativity. The essential
technical ingredient in Kuchar's analysis is a canonical transformation to a
certain chart on the gravitational phase space which features the Schwarzschild
mass parameter , expressed in terms of what are essentially
Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we
discuss the geometric interpretation of Kuchar's canonical transformation in
terms of the theory of quasilocal energy-momentum in general relativity given
by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent
boost to the rest frame," where the ``rest frame'' is defined by vanishing
quasilocal momentum. Furthermore, our formalism is general enough to cover the
case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing
Kucha\v{r}'s original work for Schwarzschild black holes from the framework of
hyperbolic geometry, we present new results concerning the canonical reduction
of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure
Technical note: application of ?-QSS to the numerical integration of kinetic equations in tropospheric chemistry
International audienceA major task in many applications of atmospheric chemistry transport problems is the numerical integration of stiff systems of Ordinary Differential Equations (ODEs) describing the chemical transformations. A faster solver that is easier to couple to the other physics in the problem is still needed. The integration method, ?-QSS, corresponding to the solver CHEMEQ2 aims at meeting the demands of a process-split, reacting-flow simulation (Mott 2000; Mott and Oran, 2001). However, this integrator has yet to be applied to the numerical integration of kinetic equations in tropospheric chemistry. A zero-dimensional (box) model is developed to test how well CHEMEQ2 works on the tropospheric chemistry equations. This paper presents the testing results. The reference chemical mechanisms herein used are Regional Atmospheric Chemistry Mechanism (RACM) (Stockwell et al., 1997) and its secondary lumped successor Regional Lumped Atmospheric Chemical Scheme (ReLACS) (Crassier et al., 2000). The box model is forced and initialized by the DRY scenarios of Protocol Ver. 2 developed by EUROTRAC (Poppe et al., 2001). The accuracy of CHEMEQ2 is evaluated by comparing the results to solutions obtained with VODE. This comparison is made with parameters of the error tolerance, relative difference with respect to VODE scheme, trade off between accuracy and efficiency, global time step for integration etc. The study based on the comparison concludes that the single-point ?-QSS approach is fast and moderately accurate as well as easy to couple to reacting flow simulation models, which makes CHEMEQ2 one of the best candidates for three-dimensional atmospheric Chemistry Transport Modelling (CTM) studies. In addition the RACM mechanism may be replaced by ReLACS mechanism for tropospheric chemistry transport modelling. The testing results also imply that the accuracy for chemistry numerical simulations is highly different from species to species. Therefore ozone is not the good choice for testing numerical ODE solvers or for evaluation of mechanisms because current tropospheric chemistry mechanisms are mainly designed for troposphere ozone prediction
Effects of Metallicity on the Rotation Rates of Massive Stars
Recent theoretical predictions for low metallicity massive stars predict that
these stars should have drastically reduced equatorial winds (mass loss) while
on the main sequence, and as such should retain most of their angular momentum.
Observations of both the Be/(B+Be) ratio and the blue-to-red supergiant ratio
appear to have a metallicity dependence that may be caused by high rotational
velocities. We have analyzed 39 archival Hubble Space Telescope Imaging
Spectrograph (STIS), high resolution, ultraviolet spectra of O-type stars in
the Magellanic Clouds to determine their projected rotational velocities V sin
i. Our methodology is based on a previous study of the projected rotational
velocities of Galactic O-type stars using International Ultraviolet Explorer
(IUE) Short Wavelength Prime (SWP) Camera high dispersion spectra, which
resulted in a catalog of V sin i values for 177 O stars. Here we present
complementary V sin i values for 21 Large Magellanic Cloud and 22 Small
Magellanic Cloud O-type stars based on STIS and IUE UV spectroscopy. The
distribution of V sin i values for O type stars in the Magellanic Clouds is
compared to that of Galactic O type stars. Despite the theoretical predictions
and indirect observational evidence for high rotation, the O type stars in the
Magellanic Clouds do not appear to rotate faster than their Galactic
counterparts.Comment: accepted by ApJ, to appear 20 December 2004 editio
Generalized 2d dilaton gravity with matter fields
We extend the classical integrability of the CGHS model of 2d dilaton gravity
[1] to a larger class of models, allowing the gravitational part of the action
to depend more generally on the dilaton field and, simultaneously, adding
fermion- and U(1)-gauge-fields to the scalar matter. On the other hand we
provide the complete solution of the most general dilaton-dependent 2d gravity
action coupled to chiral fermions. The latter analysis is generalized to a
chiral fermion multiplet with a non-abelian gauge symmetry as well as to the
(anti-)self-dual sector df = *df (df = -*df) of a scalar field f.Comment: 37 pages, Latex; typos and Eqs. (44,45) corrected; paragraph on p.
26, referring to a work of S. Solodukhin, reformulated; references adde
Single electron transistor strongly coupled to vibrations: Counting Statistics and Fluctuation Theorem
Using a simple quantum master equation approach, we calculate the Full
Counting Statistics of a single electron transistor strongly coupled to
vibrations. The Full Counting Statistics contains both the statistics of
integrated particle and energy currents associated to the transferred electrons
and phonons. A universal as well as an effective fluctuation theorem are
derived for the general case where the various reservoir temperatures and
chemical potentials are different. The first relates to the entropy production
generated in the junction while the second reveals internal information of the
system. The model recovers Franck-Condon blockade and potential applications to
non-invasive molecular spectroscopy are discussed.Comment: extended discussion, to appear in NJ
Distribution of carrier multiplication rates in CdSe and InAs nanocrystals
The distribution of rates of carrier multiplication (CM) following photon
absorption is calculated for semiconductor nanocrystals (NCs). The NC
electronic structure is described using a screened pseudopotential method known
to give reliable description of NC excitons. The rates of biexciton generation
are calculated using the Fermi golden rule with all relevant Coulomb matrix
elements, taking into account proper selection rules. In CdSe and InAs NCs we
find a broad distribution biexciton generation rates depending strongly on the
exciton energy and size of the NC. The process becomes inefficient for NC
exceeding 3 nm in diameter in the photon energy range of 2-3 times the band
gap.Comment: 4 pages 3 fi
- …