1,703 research outputs found

    Controlling colloidal phase transitions with critical Casimir forces

    Full text link
    The critical Casimir effect provides a thermodynamic analogue of the well-known quantum mechanical Casimir effect. It acts between two surfaces immersed in a critical binary liquid mixture, and results from the confinement of concentration fluctuations of the solvent. Unlike the quantum mechanical effect, the magnitude and range of this attraction can be adjusted with temperature via the solvent correlation length, thus offering new opportunities for the assembly of nano and micron-scale structures. Here, we demonstrate the active assembly control of equilibrium phases using critical Casimir forces. We guide colloidal particles into analogues of molecular liquid and solid phases via exquisite control over their interactions. By measuring the critical Casimir particle pair potential directly from density fluctuations in the colloidal gas, we obtain insight into liquefaction at small scales: We apply the Van der Waals model of molecular liquefaction and show that the colloidal gas-liquid condensation is accurately described by the Van der Waals theory, even on the scale of a few particles. These results open up new possibilities in the active assembly control of micro and nanostructures

    Electrical observation of a tunable band gap in bilayer graphene nanoribbons at room temperature

    Full text link
    We investigate the transport properties of double-gated bilayer graphene nanoribbons at room temperature. The devices were fabricated using conventional CMOS-compatible processes. By analyzing the dependence of the resistance at the charge neutrality point as a function of the electric field applied perpendicular to the graphene surface, we show that a band gap in the density of states opens, reaching an effective value of ~sim50 meV. This demonstrates the potential of bilayer graphene as FET channel material in a conventional CMOS environment.Comment: 3 pages, 3 figure

    Modular space station phase B extension preliminary system design. Volume 2: Operations and crew analyses

    Get PDF
    All analyses and tradeoffs conducted to establish the MSS operations and crew activities are discussed. The missions and subsystem integrated analyses that were completed to assure compatibility of program elements and consistency with program objectives are presented

    Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems

    Get PDF
    Two discrete areas in frontal cortex are involved in generating saccadic eye movements—the frontal eye field (FEF) and the supplementary eye field (SEF). Whereas FEF represents saccades in a topographic retinotopic map, recent evidence indicates that saccades may be represented craniotopically in SEF. To further investigate the relationship between these areas, the topographic organization of afferents to FEF from SEF in Macaco mulatto was examined by placing injections of distinct retrograde tracers into different parts of FEF that represented saccades of different amplitudes. Central FEF (lateral area 8A), which represents saccades of intermediate amplitudes, received afferents from a larger portion of SEF than did lateral FEF (area 45), which represents shorter saccades, or medial FEF (medial area 8A), which represents the longest saccades in addition to pinna movements. Moreover, in every case the zone in SEF that innervated lateral FEF (area 45) also projected to medial FEF (area 8A). In one case, a zone in rostral SEF projected to both lateral area 8A from which eye movements were evoked by microstimulation as well as medial area 8A from which pinna movements were elicited by microstimulation. This pattern of afferent convergence and divergence from SEF onto the retinotopic saccade map in FEF is indicative of some sort of map transformation between SEF and FEF. Such a transformation would be necessary to interconnect a topographic craniotopic saccade representation in SEF with a topographic retinotopic saccade representation in FE

    Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy particles under extreme confinement

    Full text link
    Colloidal patchy particles with divalent attractive interaction can self-assemble into linear polymer chains. Their equilibrium properties in 2D and 3D are well described by Wertheim's thermodynamic perturbation theory which predicts a well-defined exponentially decaying equilibrium chain length distribution. In experimental realizations, due to gravity, particles sediment to the bottom of the suspension forming a monolayer of particles with a gravitational height smaller than the particle diameter. In accordance with experiments, an anomalously high monomer concentration is observed in simulations which is not well understood. To account for this observation, we interpret the polymerization as taking place in a highly confined quasi-2D plane and extend the Wertheim thermodynamic perturbation theory by defining addition reactions constants as functions of the chain length. We derive the theory, test it on simple square well potentials, and apply it to the experimental case of synthetic colloidal patchy particles immersed in a binary liquid mixture that are described by an accurate effective critical Casimir patchy particle potential. The important interaction parameters entering the theory are explicitly computed using the integral method in combination with Monte Carlo sampling. Without any adjustable parameter, the predictions of the chain length distribution are in excellent agreement with explicit simulations of self-assembling particles. We discuss generality of the approach, and its application range.Comment: The following article has been submitted to The Journal of Chemical Physic

    Colloidal aggregation in microgravity by critical Casimir forces

    Full text link
    By using the critical Casimir force, we study the attractive strength dependent aggregation of colloids with and without gravity by means of Near Field scattering. Significant differences were seen between microgravity and ground experiments, both in the structure of the formed fractal aggregates as well as the kinetics of growth. Ground measurements are severely affected by sedimentation resulting in reaction limited behavior. In microgravity, a purely diffusive behavior is seen reflected both in the measured fractal dimensions for the aggregates as well as the power law behavior in the rate of growth. Formed aggregates become more open as the attractive strength increases.Comment: 4 pages, 3 figure

    Dynamics of colloidal aggregation in microgravity by critical Casimir forces

    Get PDF
    Using the critical Casimir force, we study the attractive-strength dependence of diffusion-limited colloidal aggregation in microgravity. By means of near field scattering we measure both the static and dynamic structure factor of the aggregates as the aggregation process evolves. The simultaneous measurement of both the static and dynamic structure factor under ideal microgravity conditions allows us to uniquely determine the ratio of the hydrodynamic and gyration radius as a function of the fractal dimension of the aggregate, enabling us to elucidate the internal structure of the aggregates as a function of the interaction potential. We find that the mass is evenly distributed in all objects with fractal dimension ranging from 2.55 for a shallow to 1.75 for the deepest potential.Comment: 5 pages, 4 figure

    Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide

    Get PDF
    During inflammatory reaction, neutrophils exhibit numerous cellular and immunological functions, notably the formation of neutrophil extracellular traps (NETs) and autophagy. NETs are composed of decondensed chromatin fibers coated with various antimicrobial molecules derived from neutrophil granules. NETs participate in antimicrobial defense and can also display detrimental roles and notably trigger some of the immune features of systemic lupus erythematosus (SLE) and other autoimmune diseases. Autophagy is a complex and finely regulated mechanism involved in the cell survival/death balance that may be connected to NET formation. To shed some light on the connection between autophagy and NET formation, we designed a number of experiments in human neutrophils and both in normal and lupus-prone MRL/lpr mice to determine whether the synthetic peptide P140, which is capable of selectively modulating chaperone-mediated autophagy (CMA) in lymphocytes, could alter NET formation. P140/Lupuzor™ is currently being evaluated in phase III clinical trials involving SLE patients. Overall our in vitro and in vivo studies established that P140 does not influence NET formation, cytokine/chemokine production, or CMA in neutrophils. Thus, the beneficial effect of P140/Lupuzor™ in SLE is apparently not directly related to modulation of neutrophil function
    • …
    corecore