80 research outputs found
Sources of Resistance for Two-spotted Spider Mite (Tetranychus urticae) in Scarlet (Solanum aethiopicum L.) and Gboma (S. macrocarpon L.) Eggplant Germplasms
The two-spotted spider mite, Tetranychus urticae, is a serious global pest of eggplants and other vegetables in the tropics and subtropics. The scarlet (Solanum aethiopicum L.) and gboma (Solanum macrocarpon L.) are two cultivated eggplants indigenous to sub-Saharan Africa. In this study, 120 accessions of S. aethiopicum and five accessions of S. macrocarpon from the World Vegetable Center’s genebank collection were evaluated for spider mite resistance based on leaf damage scores and trichome types and densities. The highest levels of resistance were detected in S. macrocarpon accessions VI050393 and VI050444. In addition, two accessions of S. aethiopicum, VI042749 and VI042753, were moderately resistant. All other S. aethiopicum accessions were susceptible or highly susceptible. Spider mite resistance was significantly associated with the presence of type VII glandular trichome, but nonglandular stellate trichomes were not associated with resistance. The resistant S. macrocarpon accessions can be directly used as resistant cultivars or in prebreeding programs aimed at breeding resistant lines of the most commonly cultivated eggplant (S. melogena).publishedVersio
Dynamical climatic model for time to flowering in Vigna radiata
Background: Phenology data collected recently for about 300 accessions of Vigna radiata (mungbean) is an invaluable resource for investigation of impacts of climatic factors on plant development. Results: We developed a new mathematical model that describes the dynamic control of time to flowering by daily values of maximal and minimal temperature, precipitation, day length and solar radiation. We obtained model parameters by adaptation to the available experimental data. The models were validated by cross-validation and used to demonstrate that the phenology of adaptive traits, like flowering time, is strongly predicted not only by local environmental factors but also by plant geographic origin and genotype. Conclusions: Of local environmental factors maximal temperature appeared to be the most critical factor determining how faithfully the model describes the data. The models were applied to forecast time to flowering of accessions grown in Taiwan in future years 2020-2030
Genome-wide association study in accessions of the mini-core collection of mungbean (Vigna radiata) from the World Vegetable Gene Bank (Taiwan)
Background: Mungbean (Vigna radiata (L.) R. Wilczek, or green gram) is important tropical and sub-tropical legume and a rich source of dietary protein and micronutrients. In this study we employ GWAS to examine the genetic basis of variation in several important traits in mungbean, using the mini-core collection established by the World Vegetable Center, which includes 296 accessions that represent the major market classes. This collection has been grown in a common field plot in southern European part of Russia in 2018. Results: We used 5041 SNPs in 293 accessions that passed strict filtering for genetic diversity, linkage disequilibrium, population structure and GWAS analysis. Polymorphisms were distributed among all chromosomes, but with variable density. Linkage disequilibrium decayed in approximately 105 kb. Four distinct subgroups were identified within 293 accessions with 70% of accessions attributed to one of the four populations. By performing GWAS on the mini-core collection we have found several loci significantly associated with two important agronomical traits. Four SNPs associated with possibility of maturation in Kuban territory of Southern Russia in 2018 were identified within a region of strong linkage which contains genes encoding zinc finger A20 and an AN1 domain stress-associated protein. Conclusions: The core collection of mungbean established by the World Vegetable Center is a valuable resource for mungbean breeding. The collection has been grown in southern European part of Russia in 2018 under incidental stresses caused by abnormally hot weather and different photoperiod. We have found several loci significantly associated with color of hypocotyl and possibility of maturation under these stressful conditions. SNPs associated with possibility of maturation localize to a region on chromosome 2 with strong linkage, in which genes encoding zinc finger A20 and AN1 domain stress associated protein (SAP) are located. Phenotyping of WorldVeg collection for maturation traits in temperate climatic locations is important as phenology remains a critical breeding target for mungbean. As demand rises for mungbean, production in temperate regions with shorter growing seasons becomes crucial to keep up with needs. Uncovering SNPs for phenology traits will speed breeding efforts
Molecular Markers Associated to Two Non-allelic Genic Male Sterility Genes in Peppers (Capsicum annuum L.)
Male sterility is of high importance in hybrid seed production of hot and sweet peppers. Genic (or nuclear) male sterility (GMS) is a simply inherited (usually monogenic recessive) and highly stable trait. However, one major disadvantage of using GMS is 1:1 segregation of male sterile to male fertile plants in every subsequent generation. Molecular markers tightly linked to genic male sterility (ms) genes would facilitate an efficient and rapid transfer of ms genes into different genetic backgrounds through marker-assisted backcrossing. The two non-allelic genic male sterility genes ms3 and msw in hot and sweet pepper backgrounds, respectively, are monogenic recessive. Genotyping by sequencing (GBS) in an F2 population segregating for ms3 gene in hot pepper and in an F6 inbred near-isogenic line (NIL) population segregating for msw gene in sweet pepper yielded 9,713 and 7,453 single nucleotide polymorphism markers, respectively. Four candidate SNPs co-segregating with ms3 gene and one co-segregating with msw gene were identified by bulk segregant analysis and physically mapped to chromosomes 1 and 5, respectively. In hot pepper, two markers [HPGMS2 (CAPS) and HPGMS3 (dCAPS)] located 3.83 cM away from the ms3 gene and in sweet pepper the dCAPS marker SPGMS1 co-segregated (completely linked) with the msw gene were developed. These markers will increase the efficacy of the male sterility genes for pepper breeding, as they can be useful in developing the genic male sterile lines in parental inbred lines of commercial hybrids through marker-assisted backcrossing, hybrid seed production, and genetic purity testing of hybrid seeds
Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication
ArticleProceedings of the National Academy of Sciences. 117(25): 14543-14551. (2020)journal articl
Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives
This study provides insights in patterns of distribution of abiotic and biotic stress resilience across Vigna gene pools to enhance the use and conservation of these genetic resources for legume breeding. Vigna is a pantropical genus with more than 88 taxa including important crops such as V. radiata (mung bean) and V. unguiculata (cowpea). our results show that sources of pest and disease resistance occur in at least 75 percent of the Vigna taxa, which were part of screening assessments, while sources of abiotic stress resilience occur in less than 30 percent of screened taxa. This difference in levels of resilience suggests that Vigna taxa co-evolve with pests and diseases while taxa are more conservative to adapt to climatic changes and salinization. twenty-two Vigna taxa are poorly conserved in genebanks or not at all. this germplasm is not available for legume breeding and requires urgent germplasm collecting before these taxa extirpate on farm and in the wild. Vigna taxa, which tolerate heat and drought stress are rare compared with taxa, which escape these stresses because of short growing seasons or with taxa, which tolerate salinity. We recommend prioritizing these rare Vigna taxa for conservation and screening for combined abiotic and biotic stress resilience resulting from stacked or multifunctional traits. the high presence of salinity tolerance compared with drought stress tolerance, suggests that Vigna taxa are good at developing salt-tolerant traits. Vigna taxa are therefore of high value for legume production in areas that will suffer from salinization under global climate change.publishedVersio
Applications and Major Achievements of Genome Editing in Vegetable Crops: A Review
The emergence of genome-editing technology has allowed manipulation of DNA sequences in genomes to precisely remove or replace specific sequences in organisms resulting in targeted mutations. In plants, genome editing is an attractive method to alter gene functions to generate improved crop varieties. Genome editing is thought to be simple to use and has a lower risk of off-target effects compared to classical mutation breeding. Furthermore, genome-editing technology tools can also be applied directly to crops that contain complex genomes and/or are not easily bred using traditional methods. Currently, highly versatile genome-editing tools for precise and predictable editing of almost any locus in the plant genome make it possible to extend the range of application, including functional genomics research and molecular crop breeding. Vegetables are essential nutrient sources for humans and provide vitamins, minerals, and fiber to diets, thereby contributing to human health. In this review, we provide an overview of the brief history of genome-editing technologies and the components of genome-editing tool boxes, and illustrate basic modes of operation in representative systems. We describe the current and potential practical application of genome editing for the development of improved nutritious vegetables and present several case studies demonstrating the potential of the technology. Finally, we highlight future directions and challenges in applying genome-editing systems to vegetable crops for research and product development
Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management
How to sustainably feed a growing global population is a question still without an answer. Particularly farmers, to increase production, tend to apply more fertilizers and pesticides, a trend especially predominant in developing countries. Another challenge is that industrialization and other human activities produce pollutants, which accumulate in soils or aquatic environments, contaminating them. Not only is human well-being at risk, but also environmental health. Currently, recycling, land-filling, incineration and pyrolysis are being used to reduce the concentration of toxic pollutants from contaminated sites, but too have adverse effects on the environment, producing even more resistant and highly toxic intermediate compounds. Moreover, these methods are expensive, and are difficult to execute for soil, water, and air decontamination. Alternatively, green technologies are currently being developed to degrade toxic pollutants. This review provides an overview of current research on microbial inoculation as a way to either replace or reduce the use of agrochemicals and clean environments heavily affected by pollution. Microorganism-based inoculants that enhance nutrient uptake, promote crop growth, or protect plants from pests and diseases can replace agrochemicals in food production. Several examples of how biofertilizers and biopesticides enhance crop production are discussed. Plant roots can be colonized by a variety of favorable species and genera that promote plant growth. Microbial interventions can also be used to clean contaminated sites from accumulated pesticides, heavy metals, polyaromatic hydrocarbons, and other industrial effluents. The potential of and key processes used by microorganisms for sustainable development and environmental management are discussed in this review, followed by their future prospects
Multi-environment association study highlights candidate genes for robust agronomic quantitative trait loci in a novel worldwide Capsicum core collection
Investigating crop diversity through genome-wide association studies (GWAS) on core collections helps in deciphering the genetic determinants of complex quantitative traits. Using the G2P-SOL project world collection of 10 038 wild and cultivated Capsicum accessions from 10 major genebanks, we assembled a core collection of 423 accessions representing the known genetic diversity. Since complex traits are often highly dependent upon environmental variables and genotype-by-environment (G x E) interactions, multi-environment GWAS with a 10 195-marker genotypic matrix were conducted on a highly diverse subset of 350 Capsicum annuum accessions, extensively phenotyped in up to six independent trials from five climatically differing countries. Environment-specific and multi-environment quantitative trait loci (QTLs) were detected for 23 diverse agronomic traits. We identified 97 candidate genes potentially implicated in 53 of the most robust and high-confidence QTLs for fruit flavor, color, size, and shape traits, and for plant productivity, vigor, and earliness traits. Investigating the genetic architecture of agronomic traits in this way will assist the development of genetic markers and pave the way for marker-assisted selection. The G2P-SOL pepper core collection will be available upon request as a unique and universal resource for further exploitation in future gene discovery and marker-assisted breeding efforts by the pepper community
- …