6,828 research outputs found
A constitutional study of a dual phase steel containing 12% chromium
Bibliography: pages 79-86.This thesis involved a study of the phase transfonnations in a chromium containing corrosion resistant dual phase steel, designated 3CR12. The objectives included the detennination of time-temperature-transformation (TTT) diagrams for the transformations between austenite and ferrite and an investigation into the factors controlling these reactions. The austenite decomposition reaction for a high nickel alloy, 3CR12Ni, and the effect of varying titanium concentrations on the equilibrium phases present in 3CR12, were also examined. Dilatometry was used to determine the transformation temperatures between austenite and ferrite and the Ms temperatures for the alloys investigated. The kinetics of the reactions were investigated by optical microscopy using two different etching techniques while the volume fractions of the various constituents were determined by a point counting method. Transmission electron microscopy was used to study the carbide morphologies and the nucleation and growth modes of the phases during the transformations. The distribution of the alloy elements were determined by microhardness measurements, an electronprobe microanalysis and a Kevex spectrometer attached to a scanning electron microscope. The 3CR12 alloy used in this study did not become fully austenitic above the Aeā; it lies in the nose of the gamma loop of the Fe-Cr phase diagram. Two temperature regimes were identified on the decomposition of austenite. At 750Ā°c the existing ferrite grains grew into the austenite matrix, while at 650Ā° C and 700Ā°C new ferrite was sympathetically nucleated i.e. it was heterogeneously nucleated on existing ferrite/austenite grain boundaries. Two types of carbide morphologies were formed. These were random precipitation within the ferrite grains and interphase precipitation. The TTI diagram showed conventional "C" curve kinetics. The austenitisation reaction occurred by a para-equilibrium mechanism. The rate controlling process was the structural change from ferrite to austenite; the reaction was not long range diffusion controlled. The speed of the reaction increased continuously with increasjng transformation temperature. No growth of ferrite occurred on isothermal transformation of 3CR12Ni at temperatures below the Aeā. Increasing the bulk titanium content increased the Ms, Aeā and Aeā temperatures of 3CR12 due to the removal of carbon from, and the addition of titanium to, solution
Sintering of titanium with yttrium oxide additions for the scavenging of chlorine impurities
Chloride impurities in titanium powders are extremely difficult to remove and present a long-standing problem in titanium powder metallurgy. We show that the detrimental effects of chlorides on the sintering of titanium can be mitigated with trace additions of yttrium oxide, which has a high affinity for the normally volatile species and forms highly stable oxychloride reaction products. Compacts that would otherwise exhibit gross swelling and excessive porosity due to chloride impurities can be now sintered to near full density by liquid phase sintering. The potency of yttrium oxide additions is observable at levels as low as 500 ppm. The scavenging of chlorine by YO appears to be independent of alloy composition and sintering regime. It is effective when used with high-chloride powders such as Kroll sponge fines but ineffective when used with powders containing NaCl impurities or during solid-state sintering. The identification of highly potent chlorine scavengers may enable the future development of chloride-tolerant powder metallurgy (PM) alloys aimed at utilizing low-cost, high-chloride powder feedstocks
Roofing Nail Performance In Structural Flakeboards
Phenolic structural flakeboard might be commonly used as roof and wall sheathing and as subfloor panels in housing. Important in the acceptability of such flakeboard as roof sheathing is the ability to hold the shingles in place. Failure of the roofing nails to perform this function is exhibited by nail "pop"āthe slow natural withdrawal of a nail due to shrinkage and swelling of the panel and shingles. Such tendency of 1-inch roofing nails that had been driven into and through commercial and experimental flakeboards was compared with that in 5-ply exterior grade Douglas-fir plywood. Cyclic moisture conditions (including freeze-thaw) were generated employing an ASTM accelerated aging procedure. Nail pop was not evidenced in any of the panels. Rather, the nailheads were observed to subside further into shingle and panel surfaces with increasing exposure. This subsidence was highly correlated to the thickness swell of the panels. It can be concluded that nail pop will not be a problem with nails driven through the flakeboard
Research on an expert system for database operation of simulation-emulation math models. Volume 1, Phase 1: Results
The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge
Research on an expert system for database operation of simulation-emulation math models. Volume 2, Phase 1: Results
A reference manual is provided for NESS, a simulation expert system. This manual gives user information regarding starting and operating NASA expert simulation system (NESS). This expert system provides an intelligent interface to a generic simulation program for spacecraft attitude control problems. A menu of the functions the system can perform is provided. Control repeated returns to this menu after executing each user request
Distortion in a 7xxx aluminum alloy during liquid phase sintering
The distortion in a sintered 7xxx aluminum alloy, Al-7Zn-2.5Mg-1Cu (wt. pct), has been investigated by sintering three rectangular bars in each batch at 893 K (620 Ā°C) for 0 to 40 minutes in nitrogen, followed by air or furnace cooling. They were placed parallel to each other, equally spaced apart at 2 mm, with their long axes being perpendicular to the incoming nitrogen flow. Pore evolution in each sample during isothermal sintering was examined metallographically. The compositional changes across sample mid-cross section and surface layers were analyzed using energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy depth profiling, respectively. The two outer samples bent toward the middle one, while the middle sample was essentially distortion free after sintering. The distortion in the outer samples was a result of differential shrinkage between their outer and inner surfaces during isothermal sintering. The porous outer surface showed an enrichment of oxygen around the large pores as well as lower magnesium and zinc contents than the interior and inner surface of the same sample, while the inner surface was distinguished by the presence of AlN. The differential shrinkage was caused by different oxygen contents in local sintering atmosphere and unbalanced loss of magnesium and zinc between the outer and inner surfaces
Binder-treated segregation-free aluminum alloy powders
Two paraffin waxes with different melting points and mixed at a specific mass ratio were used as a binder for premixed aluminum alloy powders. Dusting, segregation, and part-to-part variability were significantly reduced and powder flow improved compared to untreated powder In addition, the green density of compacts fabricated from the binder-treated powders was higher than that of the untreated powders. Sintered mechanical properties were not significantly affected by the addition of the binder Air-drying alkyd binders and water-based wax emulsions were also tested, but the results were less satisfactory
Development of a coupled expert system for the spacecraft attitude control problem
A majority of the current expert systems focus on the symbolic-oriented logic and inference mechanisms of artificial intelligence (AI). Common rule-based systems employ empirical associations and are not well suited to deal with problems often arising in engineering. Described is a prototype expert system which combines both symbolic and numeric computing. The expert system's configuration is presented and its application to a spacecraft attitude control problem is discussed
Horizon effects with surface waves on moving water
Surface waves on a stationary flow of water are considered, in a linear model
that includes the surface tension of the fluid. The resulting gravity-capillary
waves experience a rich array of horizon effects when propagating against the
flow. In some cases three horizons (points where the group velocity of the wave
reverses) exist for waves with a single laboratory frequency. Some of these
effects are familiar in fluid mechanics under the name of wave blocking, but
other aspects, in particular waves with negative co-moving frequency and the
Hawking effect, were overlooked until surface waves were investigated as
examples of analogue gravity [Sch\"utzhold R and Unruh W G 2002 Phys. Rev. D 66
044019]. A comprehensive presentation of the various horizon effects for
gravity-capillary waves is given, with emphasis on the deep water/short
wavelength case kh>>1 where many analytical results can be derived. A
similarity of the state space of the waves to that of a thermodynamic system is
pointed out.Comment: 30 pages, 15 figures. Minor change
- ā¦