5,402 research outputs found

    Towards the theory of coherent hard dijet production on hadrons and nuclei

    Get PDF
    We carry out a detailed calculation of the cross section of pion diffraction dissociation into two jets with large transverse momenta, originating from a hard gluon exchange between the pion constituents. Both the quark and the gluon contribution are considered and in the latter case we present calculations both in covariant and in axial gauges. We find that the standard collinear factorization does not hold in this reaction. The structure of non-factorizable contributions is discussed and the results are compared with the experimental data. Our conclusion is that the existing theoretical uncertainties do not allow, for the time being, for a quantitative extraction of the pion distribution amplitude.Comment: 45 pages, latex, 17 figures, final version to appear in Nuclear Physics

    Hard exclusive electroproduction of decuplet baryons in the large N_c limit

    Get PDF
    The cross sections and transverse spin asymmetries in the hard exclusive electroproduction of decuplet baryons are calculated in the large N_c limit and found to be comparable to that of octet baryons. Large N_c selection rules for the production amplitudes are derived, leading to new sensitive tests of the spin aspects of the QCD chiral dynamics both in the nonstrange and strange sectors. Importance of such studies for the reliable extraction of the pion form factor from pion electroproduction is explained.Comment: 4 pages, 3 figure

    Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium

    Full text link
    We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately strong infrared (IR) laser field. We formulate the atomic response using both the frequency-dependent absorption cross section and a time-frequency approach based on the time-dependent dipole induced by the light fields. The latter approach can be used in cases when an ultrafast dressing pulse induces transient effects, and/or when the atom exchanges energy with multiple frequency components of the XUV field. We first characterize the dressed atom response by calculating the frequency-dependent absorption cross section for XUV energies between 20 and 24 eV for several dressing wavelengths between 400 and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p transition that can potentially lead to transparency for absorption of XUV light tuned to this transition. We study the effect of this XUV transparency in a macroscopic helium gas by incorporating the time-frequency approach into a solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise

    The Ginzburg-Landau Free Energy Functional of Color Superconductivity at Weak Coupling

    Get PDF
    We derive the Ginzburg-Landau free energy functional of color superconductivity in terms of the thermal diagrams of QCD in its perturbative region. The zero mode of the quadratic term coefficient yields the same transition temperature, including the pre-exponential factor, as the one obtained previously from the Fredholm determinant of the two quark scattering amplitude. All coefficients of the free energy can be made identical to those of a BCS model by setting the Fermi velocity of the latter equal to the speed of light. We also calculate the induced symmetric color condensate near TcT_c and find that it scales as the cubic power of the dominant antisymmetric color component. We show that in the presence of an inhomogeneity and a nonzero gauge potential, while the color-flavor locked condensate dominates in the bulk, the unlocked condensate, the octet, emerges as a result of a simultaneous color-flavor rotation in the core region of a vortex filament or at the junction of super and normal phases.Comment: 32 pages, Plain Tex, 3 figure

    Mixing quantum and classical mechanics and uniqueness of Planck's constant

    Get PDF
    Observables of quantum or classical mechanics form algebras called quantum or classical Hamilton algebras respectively (Grgin E and Petersen A (1974) {\it J Math Phys} {\bf 15} 764\cite{grginpetersen}, Sahoo D (1977) {\it Pramana} {\bf 8} 545\cite{sahoo}). We show that the tensor-product of two quantum Hamilton algebras, each characterized by a different Planck's constant is an algebra of the same type characterized by yet another Planck's constant. The algebraic structure of mixed quantum and classical systems is then analyzed by taking the limit of vanishing Planck's constant in one of the component algebras. This approach provides new insight into failures of various formalisms dealing with mixed quantum-classical systems. It shows that in the interacting mixed quantum-classical description, there can be no back-reaction of the quantum system on the classical. A natural algebraic requirement involving restriction of the tensor product of two quantum Hamilton algebras to their components proves that Planck's constant is unique.Comment: revised version accepted for publication in J.Phys.A:Math.Phy

    Singlet VA \tilde V correlator within the instanton vacuum model

    Full text link
    The correlator of singlet axial-vector and vector currents in the external electromagnetic field is studied within the instanton liquid model of QCD vacuum. In the chiral limit we calculate the longitudinal w_L^0 and transversal w_T^0 with respect to axial-vector index invariant amplitudes at arbitrary momentum transfer q. It is demonstrated how the anomalous longitudinal part of the correlator is renormalized at low momenta due to the presence of the U_A(1) anomaly.Comment: 9 pages, 4 figure

    Dilepton and Photon Emission Rates from a Hadronic Gas

    Get PDF
    We analyze the dilepton and photon emission rates from a hadronic gas using chiral reduction formulas and a virial expansion. The emission rates are reduced to pertinent vacuum correlation functions, most of which can be assessed from experiment. Our results indicate that in the low mass region, the dilepton and photon rates are enhanced compared to most of the calculations using chiral Lagrangians. The enhancement is further increased through a finite pion chemical potential. An estimate of the emission rates is also made using Haag's expansion for the electromagnetic current. The relevance of these results to dilepton and photon emission rates in heavy-ion collisions is discussed.Comment: 7 pages, LaTeX using revTeX, 6 figures imbedded in text. Figures slightly changed, text left unchange

    Short distance current correlators: Comparing lattice simulations to the instanton liquid

    Get PDF
    Point to point correlators of currents are computed in quenched QCD using a chiral lattice fermion action, the overlap action. I compare correlators made of exact quark propagators with correlators restricted to low (less than 500 MeV) eigenvalue eigenmodes of the Dirac operator. In many cases they show qualitative resemblence (typically at small values of the quark mass and distances larger than 0.4 fm) and they differ qualitatively at larger quark masses or at very short distance. Lattice results are in qualitative agreement (and in the difference of vector and axial vector channels, quantitative agreement) with the expectations of instanton liquid models. The scalar channel shows the effects of a quenched finite volume zero mode artifact, a negative correlator.Comment: 18 pages, Revtex, 11 postscript figures. Some changes. Version to appear in Phys. Rev.

    Quark propagator, instantons and gluon propagator

    Full text link
    The Schwinger-Dyson formalism is used to check the consistency of instanton model solutions for the quark propagator with recent models of confining gluon propagators. We find that the models are not consistent. A major discrepancy is the absence of a vector condensate in the instanton model that is present in the solutions with nonperturbative confining gluons.Comment: Latex file, no figure

    Vacuum Condensates in the Global Color Symmetry Model

    Full text link
    Based on the quark propagator in the instanton dilute liquid approximation, we calculate analytically the quark condensate , the mixed quark gluon condensate $g_{s}$ and the four quark condensate at the mean field level in the framework of global color symmetry model. The numerical calculation shows that the values of these condensates are compatible with the ranges determined by other nonperturbative approaches. Moreover, we find that for nonlocal four quark condensate the previous vacuum saturation assumption is not a good approximation even at the mean field level.Comment: 8 latex pages, no figure, Submitted to Phys. Rev.
    corecore