8,149 research outputs found
Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra
We study the influence of phase matching on interference minima in high
harmonic spectra. We concentrate on structures in atoms due to interference of
different angular momentum channels during recombination. We use the Cooper
minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure
2d harmonic spectra in argon as a function of wavelength and angular
divergence. While we identify a clear CM in the spectrum when the target gas
jet is placed after the laser focus, we find that the appearance of the CM
varies with angular divergence and can even be completely washed out when the
gas jet is placed closer to the focus. We also show that the argon CM appears
at different wavelengths in harmonic and photo-absorption spectra measured
under conditions independent of any wavelength calibration. We model the
experiment with a simulation based on coupled solutions of the time-dependent
Schr\"odinger equation and the Maxwell wave equation, including both the single
atom response and macroscopic effects of propagation. The single atom
calculations confirm that the ground state of argon can be represented by its
field free symmetry, despite the strong laser field used in high harmonic
generation. Because of this, the CM structure in the harmonic spectrum can be
described as the interference of continuum and channels, whose relative
phase jumps by at the CM energy, resulting in a minimum shifted from the
photoionization result. We also show that the full calculations reproduce the
dependence of the CM on the macroscopic conditions. We calculate simple phase
matching factors as a function of harmonic order and explain our experimental
and theoretical observation in terms of the effect of phase matching on the
shape of the harmonic spectrum. Phase matching must be taken into account to
fully understand spectral features related to HHG spectroscopy
Effective Gap Equation for the Inhomogeneous LOFF Superconductive Phase
We present an approximate gap equation for different crystalline structures
of the LOFF phase of high density QCD at T=0. This equation is derived by using
an effective condensate term obtained by averaging the inhomogeneous condensate
over distances of the order of the crystal lattice size. The approximation is
expected to work better far off any second order phase transition. As a
function of the difference of the chemical potentials of the up and down
quarks, , we get that the octahedron is energetically favored from
to , where is the gap for
the homogeneous phase, while in the range the face
centered cube prevails. At a first order phase
transition to the normal phase occurs.Comment: 11 pages, 5 figure
Attosecond Control of Ionization Dynamics
Attosecond pulses can be used to initiate and control electron dynamics on a
sub-femtosecond time scale. The first step in this process occurs when an atom
absorbs an ultraviolet photon leading to the formation of an attosecond
electron wave packet (EWP). Until now, attosecond pulses have been used to
create free EWPs in the continuum, where they quickly disperse. In this paper
we use a train of attosecond pulses, synchronized to an infrared (IR) laser
field, to create a series of EWPs that are below the ionization threshold in
helium. We show that the ionization probability then becomes a function of the
delay between the IR and attosecond fields. Calculations that reproduce the
experimental results demonstrate that this ionization control results from
interference between transiently bound EWPs created by different pulses in the
train. In this way, we are able to observe, for the first time, wave packet
interference in a strongly driven atomic system.Comment: 8 pages, 4 figure
Constituent quark model for baryons with strong quark-pair correlations and non-leptonic weak transitions of hyperon
We study the roles of quark-pair correlations for baryon properties, in
particular on non-leptonic weak decay of hyperons. We construct the quark wave
function of baryons by solving the three body problem explicitly with
confinement force and the short range attraction for a pair of quarks with
their total spin being 0. We show that the existence of the strong quark-quark
correlations enhances the non-leptonic transition amplitudes which is
consistent with the data, while the baryon masses and radii are kept to the
experiment.Comment: 4 pages, 2 figures, talk presented at KEK-Tanashi International
Symposium on Physics of Hadrons and Nuclei, Tokyo, Japan, 14-17 Dec. 199
Thermodynamic properties of QCD in external magnetic fields
We consider the effect of strong external electromagnetic fields on
thermodynamic observables in QCD, through lattice simulations with 1+1+1
flavors of staggered quarks at physical quark masses. Continuum extrapolated
results are presented for the light quark condensates and for their tensor
polarizations, as functions of the temperature and the magnetic field. We find
the light condensates to undergo inverse magnetic catalysis in the transition
region, in a manner that the transition temperature decreases with growing
magnetic field. We also compare the results to other approaches and lattice
simulations. Furthermore, we relate the tensor polarization to the spin part of
the magnetic susceptibility of the QCD vacuum, and show that this contribution
is diamagnetic.Comment: 13 pages, 9 figures, talks presented by FB and GE at Xth Quark
Confinement and the Hadron Spectrum, 8-12 October 2012, TUM Campus Garching,
Munich, German
Note on Moufang-Noether currents
The derivative Noether currents generated by continuous Moufang
tranformations are constructed and their equal-time commutators are found. The
corresponding charge algebra turns out to be a birepresentation of the tangent
Mal'ltsev algebra of an analytic Moufang loop.Comment: LaTeX2e, 6 pages, no figures, presented on "The XVth International
Colloquium on Integrable Systems and Quantum Symmetries, Prague, 15-17 June,
2006
Electron angular distributions in near-threshold atomic ionization
International audienceWe present angle- and energy-resolved measurements of photoelectrons produced in strongfield ionisation of Xe using a tunable femtosecond laser. An occurrence of highly oscillatory patterns in the angular distribution at low photoelectron kinetic energy is observed that correlates with channel closing/opening over a wide range of laser parameters. The correlation is investigated both experimentally and by means of systematic analysis of numerical solutions of the time-dependent Schrödinger equation (TDSE). Our experimental and numerical results are in quantitative agreement with the semi-classical model introduced by Arbó et al. (Phys. Rev. A 78, 013406 (2008)), which relates the oscillatory patterns to interference between photoelectrons produced during different cycles of the laser pulse in the course of non-resonant ionisation of the atom. We observe that an increase of the laser intensity eventually leads to qualitative invariance of the pattern, defining a limit on the applicability of the semi-classical model
Instanton dominance of topological charge fluctuations in QCD?
We consider the local chirality of near-zero eigenvectors from Wilson-Dirac
and clover improved Wilson-Dirac lattice operators as proposed recently by
Horv\'ath et al. We studied finer lattices and repaired for the loss of
orthogonality due to the non-normality of the Wilson-Dirac matrix. As a result
we do see a clear double peak structure on lattices with resolutions higher
than 0.1 fm. We found that the lattice artifacts can be considerably reduced by
exploiting the biorthogonal system of left and right eigenvectors. We conclude
that the dominance of instantons on topological charge fluctuations is not
ruled out by local chirality measurements.Comment: 10 pages, 6 figure
- …