921 research outputs found
Management of Adverse Events Following Treatment With Anti‐Programmed Death‐1 Agents
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140047/1/onco1230.pd
Получение керамических мембран на основе оксида алюминия для очистки воды
We performed DNA microarray-based comparative genomic hybridization to identify somatic alterations specific to melanoma genome in 60 human cell lines from metastasized melanoma and from 44 corresponding peripheral blood mononuclear cells. Our data showed gross but nonrandom somatic changes specific to the tumor genome. Although the CDKN2A (78%) and PTEN (70%) loci were the major targets of mono-allelic and bi-allelic deletions, amplifications affected loci with BRAF (53%) and NRAS (12%) as well as EGFR (52%), MITF (40%), NOTCH2 (35%), CCND1 (18%), MDM2 (18%), CCNE1 (10%), and CDK4 (8%). The amplified loci carried additional genes, many of which could potentially play a role in melanoma. Distinct patterns of copy number changes showed that alterations in CDKN2A tended to be more clustered in cell lines with mutations in the BRAF and NRAS genes; the PTEN locus was targeted mainly in conjunction with BRAF mutations. Amplification of CCND1, CDK4, and other loci was signifi cantly increased in cell lines without BRAF-NRAS mutations and so was the loss of chromosome arms 13q and 16q. Our data suggest involvement of distinct genetic pathways that are driven either through oncogenic BRAF and NRAS mutations complemented by aberrations in the CDKN2A and PTEN genes or involve amplification of oncogenic genomic loci and loss of 13q and 16q. It also emerges that each tumor besides being affected by major and most common somatic genetic alterations also acquires additional genetic alterations that could be crucial in determining response to small molecular inhibitors that are being currently pursued
Nuclear proto-oncogene products transactivate the human papillomavirus type 16 promoter.
Human papillomavirus (HPV) type 16 and 18 viral genomes are frequently detected in cervical and penile cancer biopsies. Although this strongly suggests a prominent role for HPV infection in the development of genital cancer, other genetic or environmental factors are also involved. Genital cancer is postulated to result from loss of cellular control functions, which leads to an unregulated expression of HPV oncogenic proteins. In our study, we determined the trans-activating properties of nuclear proto-oncogene proteins c-Fos, c-Jun and c-Myc on P97 enhancer/promoter activity of HPV16. Using a CAT-reporter construct containing the HPV16 enhancer/promoter element, we investigated the trans-activating effects of c-Fos, c-Jun, c-Myc, and E2 in cervical HT-3 cells. c-Fos and c-Jun overexpression resulted in a 3.3- and 3.1-fold up-regulation of CAT activity. Only 2-fold induction was determined by co-transfection with c-myc and the viral transcription factor E2. Based on these findings, we investigated the expression of HPV DNA (16 and 18) as well as nuclear proto-oncogenes (c-fos, c-jun and c-myc) in nine cervical cancers by in situ hybridisation. In six out of nine carcinomas, HPV16 and/or HPV18 DNA was detectable. All tumours showed an intense and homogeneous expression of c-fos and c-jun mRNA, while the signal for c-myc was detectable only in four specimens. These data suggest that deregulation of nuclear proto-oncogene expression may contribute to an overexpression of HPV-derived oncogenic proteins (E6 and E7), which is generally hypothesised to be an important step in the malignant transformation of HPV-associated tumours
Biomarkers in melanoma
Biomarkers are tumour- or host-related factors that correlate with tumour biological behaviour and patient prognosis. High-throughput analytical techniques--DNA and RNA microarrays--have identified numerous possible biomarkers, but their relevance to melanoma progression, clinical outcome and the selection of optimal treatment strategies still needs to be established. The review discusses a possible molecular basis for predictive tissue biomarkers such as melanoma thickness, ulceration and mitotic activity, and provides a list of promising new biomarkers identified from tissue microarrays that needs confirmation by independent, prospectively collected clinical data sets. In addition, common predictive serum biomarkers--lactate dehydrogenase, S100B and melanoma-inhibiting activity--as well as selected investigational serum biomarkers such as TA90IC and YKL-40 are also reviewed. A more accurate, therapeutically predictive classification of human melanomas and selection of patient populations that would profit from therapeutic interventions are among the major challenges expected to be addressed in the futur
Expression of SCF splice variants in human melanocytes and melanoma cell lines: potential prognostic implications
Stem cell factor (SCF), the ligand for c-Kit, is known to regulate developmental and functional processes of haematopoietic stem cells, mast cells and melanocytes. Two different splice variants form predominantly soluble (sSCF or SCF-1) and in addition some membrane-bound SCF (mSCF or SCF-2). In order to explore the prognostic significance of these molecules in melanoma, total SCF, SCF splice variants and c-Kit expression were studied in normal skin melanocytes and in 11 different melanoma cell lines, using reverse transcription polymerase chain reaction, immunocytochemistry and enzyme-linked immunosorbent assay. Nine of the 11 melanoma cell lines expressed SCF-1 mRNA, only two of them SCF-2, and these two also SCF-1. Coexpression of both SCF-1 and c-Kit was noted in five cell lines, and only one cell line as well as normal melanocytes expressed both SCF-1 and SCF-2 as well as c-Kit. Corresponding results were obtained on immunocytochemical staining. Of three exemplary melanoma cell lines studied, two expressing SCF mRNA also released SCF spontaneously and on stimulation, whereas the line lacking SCF and c-kit mRNA (SK-Mel-23) failed to do so. These data demonstrate thus that melanoma cell lines, particularly those known to metastasize in vivo, lose the ability to express SCF-2 mRNA, suggesting that this molecule may serve, next to c-Kit, as a prognostic marker for malignant melanoma. © 2000 Cancer Research Campaig
Biomarkers in melanoma
Biomarkers are tumour- or host-related factors that correlate with tumour biological behaviour and patient prognosis. High-throughput analytical techniques—DNA and RNA microarrays—have identified numerous possible biomarkers, but their relevance to melanoma progression, clinical outcome and the selection of optimal treatment strategies still needs to be established. The review discusses a possible molecular basis for predictive tissue biomarkers such as melanoma thickness, ulceration and mitotic activity, and provides a list of promising new biomarkers identified from tissue microarrays that needs confirmation by independent, prospectively collected clinical data sets. In addition, common predictive serum biomarkers—lactate dehydrogenase, S100B and melanoma-inhibiting activity—as well as selected investigational serum biomarkers such as TA90IC and YKL-40 are also reviewed. A more accurate, therapeutically predictive classification of human melanomas and selection of patient populations that would profit from therapeutic interventions are among the major challenges expected to be addressed in the future
A five-year observance of changes in the cardiovascular risk profile in 505 HIV-positive individuals
Purpose: Since the introduction of antiretroviral therapy (ART) and the extension of life expectancy, HIV-infected persons have shown an increasing number of cardiovascular events. The reduction of cardiovascular risk factors becomes a new challenge in HIV care. One of the main objectives of the HIV&HEART study is to examine the development of cardiovascular risk factors and treatment of cardiovascular diseases. Methods: This study is an on-going, prospective, regional multicentre trial that was conducted to analyse the frequency and clinical course of cardiac disorders as well as cardiovascular risk factors in HIV-infected patients. 505 HIV-infected outpatients were recruited at baseline (BL) and re-examined during 5-year follow up (5YFU). Results: 84% of 505 eligible HIV-infected patients were male. The average age was 44.3±9.5 years at BL. The proportion of ART-treated patients increased from 85.7% at BL to 96.4% at 5YFU. During the 5-year observation period mean cardiovascular risk detected by Framingham score increased from 6% at BL to 10% at 5YFU. Even after adjusting for age there was a difference in the Framingham score of 2%. Between BL and 5YFU systolic blood pressure increased from 128.4±19.8 mmHg to 138.3±19.9 mmHg in spite of an intensified use of antihypertensive drugs, from 11.9% at BL to 24.0% at 5YFU. The rate of participants with adiposity, characterised by a BMI>30, increased from 7.9% at BL to 11.2% at 5YFU. Lipid-lowering therapy was applied in 10.3% of the patients at BL and in 13.9% at 5YFU. Triglycerides (TAG)≥200 mg/dl reduced from 38.9% at BL to 36.8% at 5YFU; in contrast cholesterol values≥200 mg/dl elevated from 57.8% to 61.8%. The same trend was observed in HDL≤40 mg/dl. Here we found a change from 29.2% versus 31.3%. Doing regular sports elevated from 1.9% to 3.3%. The count of smokers increased for 2.8% and also mean pack-years changes from 24 to 26.5 pack-years. Conclusion: During a 5-year period the cardiovascular risk in Framingham score increased disproportionately high in this HIV-infected cohort even after adjusting for age. There was an increasing blood pressure although an elevated use of antihypertensive therapy. There was also a tendency of elevating BMI and an increasing trend in smoking behavior. As protective facts, we found a tendency in doing sports and a decreasing TAG value during intensifying lipid-lowering therapy. Cardiovascular risk was increasing, in spite of interventions
Small molecules and targeted therapies in distant metastatic disease
Chemotherapy, biological agents or combinations of both have had little impact on survival of patients with metastatic melanoma. Advances in understanding the genetic changes associated with the development of melanoma resulted in availability of promising new agents that inhibit specific proteins up-regulated in signal cell pathways or inhibit anti-apoptotic proteins. Sorafenib, a multikinase inhibitor of the RAF/RAS/MEK pathway, elesclomol (STA-4783) and oblimersen (G3139), an antisense oligonucleotide targeting anti-apoptotic BCl-2, are in phase III clinical studies in combination with chemotherapy. Agents targeting mutant B-Raf (RAF265 and PLX4032), MEK (PD0325901, AZD6244), heat-shock protein 90 (tanespimycin), mTOR (everolimus, deforolimus, temsirolimus) and VEGFR (axitinib) showed some promise in earlier stages of clinical development. Receptor tyrosine-kinase inhibitors (imatinib, dasatinib, sunitinib) may have a role in treatment of patients with melanoma harbouring c-Kit mutations. Although often studied as single agents with disappointing results, new targeted drugs should be more thoroughly evaluated in combination therapies. The future of rational use of new targeted agents also depends on successful application of analytical techniques enabling molecular profiling of patients and leading to selection of likely therapy responder
- …