1,558 research outputs found
Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion
International audienceA novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w) of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency) occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 seconds. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC) to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol
Distinct microalgae species for food—part 2: comparative life cycle assessment of microalgae and fish for eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and protein
The production of food for a growing world population is a great challenge. In particular, protein and the long-chain n-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), which exert a series of potential health effects, are scarce resources in the context of global food security. Fish from wild capture and aquaculture production cannot meet the current demand for EPA and DHA; therefore, a supplementation with alternative sources is crucial. Specific microalgae species have been shown to be a lucrative source of EPA, DHA, and protein, in particular, the oleaginous microalgae Nannochloropsis sp. and Phaeodactylum tricornutum. This study aimed to compare different cultivation scenarios of Nannochloropsis sp. and P. tricornutum with the production of aquaculture and capture fish as traditional sources of EPA and DHA in terms of environmental impacts. Scenarios included borosilicate glass and acrylic glass as photobioreactor (PBR) materials, two different tube diameters, and three different cultivation seasons. In these scenarios, carbon dioxide was modeled as an avoided burden. Additionally, all scenarios were modeled with the burdens resulting from carbon dioxide production. Environmental impacts of selected fish species were obtained from systematic literature research. Life cycle assessment following ISO 14040/44 was used to analyze the global warming potential, acidification, eutrophication, cumulative energy demand, water footprint, and land use. The system boundaries were set from “cradle-to-store,” where the target store is located in Germany. Microalgae biomass as a source of EPA, DHA, and protein was found to have similar or lower environmental impacts than fish fillet from wild capture and aquaculture production when carbon dioxide was modeled as an avoided burden. Microalgae production that included the full burden of carbon dioxide production still caused similar or lower environmental impacts than aquaculture fish. It was found that the distinct microalgae species can significantly influence the results if the comparison is conducted based on nutritional values. Regarding the recommended daily intake of 250–500 mg EPA+DHA, microalgae are an advisable source of nutrients to lessen the environmental pressure on marine ecosystems.Publikationsfonds ML
Phase diagram and optical conductivity of La1.8-xEu0.2SrxCuO4
La1.8-xEu0.2SrxCuO4 (LESCO) is the member of the 214 family which exhibits
the largest intervals among the structural, charge ordering (CO), magnetic, and
superconducting transition temperatures. By using new dc transport measurements
and data in the literature we construct the phase diagram of LESCO between x =
0.8 and 0.20. This phase diagram has been further probed in ac, by measuring
the optical conductivity {\sigma}1({\omega}) of three single crystals with x =
0.11, 0.125, and 0.16 between 10 and 300 K in order to associate the
extra-Drude peaks often observed in the 214 family with a given phase. The
far-infrared peak we detect in underdoped LESCO is the hardest among them,
survives up to room temperature and is associated with charge localization
rather than with ordering. At the CO transition for the commensurate doping x =
0.125 instead the extra-Drude peak hardens and a pseudogap opens in
{\sigma}1({\omega}), approximately as wide as the maximum superconducting gap
of LSCO.Comment: 6 pages, 6 figure
Accuracy of computerized tomography in determining hepatic tumor size in patients receiving liver transplantation or resection
Computerized tomography (CT) of liver is used in oncologic practice for staging tumors, evaluating response to treatment, and screening patients for hepatic resection. Because of the impact of CT liver scan on major treatment decisions, it is important to assess its accuracy. Patients undergoing liver transplantation or resection provide a unique opportunity to test the accuracy of hepatic-imaging techniques by comparison of finding of preoperative CT scan with those at gross pathologic examination of resected specimens. Forty-one patients who had partial hepatic resection (34 patients) or liver transplantation (eight patients) for malignant (30 patients) or benign (11 patients) tumors were evaluable. Eight (47%) of 17 patients with primary malignant liver tumors, four (31%) of 13 patients with metastatic liver tumors, and two (20%) of 10 patients with benign liver tumors had tumor nodules in resected specimens that were not apparent on preoperative CT studies. These nodules varied in size from 0.1 to 1.6 cm. While 11 of 14 of these nodules were 1.0 cm. These results suggest that conventional CT alone may be insufficient to accurately determine the presence or absence of liver metastases, extent of liver involvement, or response of hepatic metastases to treatment
Low-energy electrodynamics of superconducting diamond
Heavily-boron-doped diamond films become superconducting with critical
temperatures well above 4 K. Here we first measure the reflectivity of
such a film down to 5 cm, by also using Coherent Synchrotron Radiation.
We thus determine the optical gap, the field penetration depth, the range of
action of the Ferrell-Glover-Tinkham sum rule, and the electron-phonon spectral
function. We conclude that diamond behaves as a dirty BCS superconductor.Comment: 4 pages including 3 figure
Tandem Solar Cell Concept Using Black Silicon for Enhanced Infrared Absorption
AbstractIn this work we present a novel tandem solar cell concept that is based on enhanced below band gap infrared absorption. The solar cell structure is based on silicon and infrared activated Black Silicon. Infrared active Black Silicon is produced by exposing silicon to fs-laser pulses. It features an enhanced IR absorption, when processed under a sulfur-containing atmosphere. Then sulfur is incorporated into the silicon lattice during laser processing providing energy states in the band gap. This silicon based tandem cell thus absorbs light with wavelengths beyond 1.1μm. This can potentially increase the overall efficiency. In this paper we present the first experimental realization of this concept. We use a standard aluminium-back-surface-field (Al-BSF) silicon solar cell and implement a Black Silicon solar cell on its rear side for enhanced IR absorption. Current and voltage measurements show the feasibility of our concept
Hubble Space Telescope imaging of the CFRS and LDSS redshift surveys - IV. Influence of mergers in the evolution of faint field galaxies from z~1
HST images of a sample of 285 galaxies with measured z from the CFRS and
Autofib-LDSS redshift surveys are analysed to derive the evolution of the
merger fraction out to z~1. We have performed visual and machine-based merger
identifications, as well as counts of bright pairs of galaxies with magnitude
differences less than 1.5 mag. We find that the pair fraction increases with z,
with up to ~20% of the galaxies being in physical pairs at z~0.75-1. We derive
a merger fraction varying with z as (1+z)^{3.2 +/- 0.6}, after correction for
line-of-sight contamination, in excellent agreement with the merger fraction
derived from the visual classification of mergers for which m = 3.4 +/- 0.6.
After correcting for seeing effects on the ground-based selection of survey
galaxies, we conclude that the pair fraction evolves as (1+z)^{2.7 +/- 0.6}.
This implies that an average L* galaxy will have undergone 0.8 to 1.8 merger
events from z=1 to 0, with 0.5 to 1.2 merger events occuring in a 2 Gyr time
span at z~0.9. This result is consistent with predictions from semi-analytical
models of galaxy formation. From the simple co-addition of the observed
luminosities of the galaxies in pairs, physical mergers are computed to lead to
a brightening of 0.5 mag for each pair on average, and a boost in star
formation rate of a factor of 2, as derived from the average [O II] equivalent
widths. Mergers of galaxies are therefore contributing significantly to the
evolution of both the luminosity function and luminosity density of the
Universe out to z~1.Comment: 14 pages, 6 PS figures included. Accepted for publication in MNRA
How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany
The future market diffusion of alternative fuels in the passenger car sector is of great interest to both carmakers and policymakers in order to decrease CO emissions. The decision to buy a car is not totally objective and only partly based on cost. For this reason, those modeling the future market evolution of cars powered by alternative fuels try to include behavioral and non-cost related aspects. This paper analyzes the integration of user behavior into market diffusion models and compares three models that include this aspect. The comparison comprises three parts: first, it compares the modeling approaches, then uses a harmonized data set to model the future market diffusion of alternative fuel vehicles, with and without behavioral aspects. The most important aspects of user behavior included in the models are the use of charging infrastructure, the limited model availability, the consideration of range anxiety as a hampering factor or the willingness-to-pay-more for alternative drivetrains as a supporting factor, as well as a distinction of users\u27 driving distances. User behavior is considered in various ways, but always has a limiting effect on electric vehicle market diffusion. While a model that distinguishes individual users and driving distances stresses the high relevance of this aspect, it is considered less important in models with a more aggregated inclusion of user behavior based on logit functions
Tailoring the Absorption Properties of Black Silicon
AbstractSamples of crystalline silicon for use as solar cell material are structured and hyperdoped with sulfur by irradiation with femtosecond laser pulses under a sulfur hexafluoride atmosphere. The sulfur creates energy levels in the silicon band gap, allowing light absorption in the infrared wavelength regime, which offers the potential of a significant efficiency increase. This Black Silicon is a potential candidate for impurity or intermediate band photovoltaics. In this paper we determine the laser processed sulfur energy levels by deep-level transient spectroscopy (DLTS). We present how the number of laser pulses per sample spot influence the sulfur energy levels and hence the DLTS spectra. Further we show that changing the laser pulse by splitting it with a Michelson interferometer setup results in altered absorption which is most likely due to altered sulfur energy levels. This contribution focuses on the possibility of controlling the sulfur in Black Silicon through manipulating the laser pulse shape. As a first step samples of microstructured silicon are fabricated with doubled laser pulses at two different laser pulse distances and the absorption spectra by integrating sphere measurements are compared
- …