470 research outputs found

    Power to the people – drei mal!

    Get PDF

    Graduate Recital: Tim Schachtschneider

    Get PDF
    Kemp Recital HallApril 14, 2013Sunday Afternoon2:30 p.m

    Riparian trees as common denominators across the river flow spectrum: are ecophysiological methods useful tools in environmental flow assessments?

    Get PDF
    Riparian tree species, growing under different conditions of water availability, can adapt their physiology to maximise their survival chances. Rivers in South Africa may flow perennially, seasonally or ephemerally (episodically). Different riparian species are adapted to survive under each of these different flow regimes by making use of surface, ground, soil, rainwater, or some combination of these. These water sources are available to varying degrees, depending on local climatic, hydrological, geohydrological and geomorphological conditions. This paper tests physiological differences among trees along rivers with varying flow regimes. In this study 3 parameters were selected and tested, namely wood density, specific leaf area and water use efficiency through stable carbon isotope measurements. All three parameters are quick, simple and cheap to determine and as such their value for standard-procedure river monitoring programmes or environmental flow requirement procedures was tested. Acacia erioloba is an arid-adapted riparian tree along the ephemeral Kuiseb (Namibia) and Kuruman (South Africa) Rivers that shows decreasing specific leaf area and increasing wood density correlating with deeper groundwater levels. Intraspecific changes for specific leaf area and carbon isotope values were demonstrated for Acacia mellifera and Croton gratissimus at varying distances from the active channel of the seasonal Mokolo River (South Africa). No significant differences in physiology were noted for Salix mucronata, Brabejum stellatifolium and Metrosideros angustifolia, growing along the perennial Molenaars and Sanddrifskloof Rivers (South Africa) under reduced flow conditions. Only the measurement of specific leaf area recurrently showed that significant physiological differences for trees occurred along rivers of the drier flow regime spectrum (seasonal and ephemeral). As such, this physiological measurement may be a valuable indicator for water stress, while the other measurements might provide more conclusive results if a larger sampling size were used. Specific leaf area, in conjunction with other carefully picked water stress measurement methods, could be considered for monitoring programmes during environmental flow assessments, river health monitoring exercises and restoration projects. This would be particularly valuable in rivers without permanent flow, where there is little species-specific knowledge and where current monitoring methods are unsuited.Keywords: ecophysiology, stable δ13C isotopes, wood density, specific leaf area, EFAs, river flow regimes, tree

    Riparian trees as common denominators across the river flow spectrum: are ecophysiological methods useful tools in environmental flow assessments?

    Get PDF
    Riparian tree species, growing under different conditions of water availability, can adapt their physiology to maximise their survival chances. Rivers in South Africa may flow perennially, seasonally or ephemerally (episodically). Different riparian species are adapted to survive under each of these different flow regimes by making use of surface, ground, soil, rainwater, or some combination of these. These water sources are available to varying degrees, depending on local climatic, hydrological, geohydrological and geomorphological conditions. This paper tests physiological differences among trees along rivers with varying flow regimes. In this study 3 parameters were selected and tested, namely wood density, specific leaf area and water use efficiency through stable carbon isotope measurements. All three parameters are quick, simple and cheap to determine and as such their value for standard-procedure river monitoring programmes or environmental flow requirement procedures was tested. Acacia erioloba is an arid-adapted riparian tree along the ephemeral Kuiseb (Namibia) and Kuruman (South Africa) Rivers that shows decreasing specific leaf area and increasing wood density correlating with deeper groundwater levels. Intraspecific changes for specific leaf area and carbon isotope values were demonstrated for Acacia mellifera and Croton gratissimus at varying distances from the active channel of the seasonal Mokolo River (South Africa). No significant differences in physiology were noted for Salix mucronata, Brabejum stellatifolium and Metrosideros angustifolia, growing along the perennial Molenaars and Sanddrifskloof Rivers (South Africa) under reduced flow conditions. Only the measurement of specific leaf area recurrently showed that significant physiological differences for trees occurred along rivers of the drier flow regime spectrum (seasonal and ephemeral). As such, this physiological measurement may be a valuable indicator for water stress, while the other measurements might provide more conclusive results if a larger sampling size were used. Specific leaf area, in conjunction with other carefully picked water stress measurement methods, could be considered for monitoring programmes during environmental flow assessments, river health monitoring exercises and restoration projects. This would be particularly valuable in rivers without permanent flow, where there is little species-specific knowledge and where current monitoring methods are unsuited

    Lightweight Interaction Modeling in Evolutionary Prototyping

    Get PDF
    The paper discusses a systematic integration of evolutionary and exploratory prototyping of interactive systems by a lightweight use of formal methods. Formal models guide the development of the underdesigned evolutionary prototype. In combination with techniques from Design Rationale, they implement theexploration and assessment of possible solutions to open design questions. Models and corresponding tool support are used to express design options and to make them more accessible to a broader audience by the creation of parallel model-guided throwaway extensions of the current evolutionary prototype. They are also used to describe design constraints (for example, in terms of tasks or in terms of actions on artifacts) and to assess design options against these criteria. The suggested approach is demonstrated through an example design scenario that shows an intertwining of different design activities and discusses the role of formal models. In particular, the scenario describes a coupling of HOPS models, QOC diagrams, and Java prototypes

    Assessing temporal behavior in lidar point clouds of urban environments

    Get PDF
    Self-driving cars and robots that run autonomously over long periods of time need high-precision and up-to-date models of the changing environment. The main challenge for creating long term maps of dynamic environments is to identify changes and adapt the map continuously. Changes can occur abruptly, gradually, or even periodically. In this work, we investigate how dense mapping data of several epochs can be used to identify the temporal behavior of the environment. This approach anticipates possible future scenarios where a large fleet of vehicles is equipped with sensors which continuously capture the environment. This data is then being sent to a cloud based infrastructure, which aligns all datasets geometrically and subsequently runs scene analysis on it, among these being the analysis for temporal changes of the environment. Our experiments are based on a LiDAR mobile mapping dataset which consists of 150 scan strips (a total of about 1 billion points), which were obtained in multiple epochs. Parts of the scene are covered by up to 28 scan strips. The time difference between the first and last epoch is about one year. In order to process the data, the scan strips are aligned using an overall bundle adjustment, which estimates the surface (about one billion surface element unknowns) as well as 270,000 unknowns for the adjustment of the exterior orientation parameters. After this, the surface misalignment is usually below one centimeter. In the next step, we perform a segmentation of the point clouds using a region growing algorithm. The segmented objects and the aligned data are then used to compute an occupancy grid which is filled by tracing each individual LiDAR ray from the scan head to every point of a segment. As a result, we can assess the behavior of each segment in the scene and remove voxels from temporal objects from the global occupancy grid.DFG/GRK/215

    Classification and Change Detection in Mobile Mapping LiDAR Point Clouds

    Get PDF
    Creating 3D models of the static environment is an important task for the advancement of driver assistance systems and autonomous driving. In this work, a static reference map is created from a Mobile Mapping “light detection and ranging” (LiDAR) dataset. The data was obtained in 14 measurement runs from March to October 2017 in Hannover and consists in total of about 15 billion points. The point cloud data are first segmented by region growing and then processed by a random forest classification, which divides the segments into the five static classes (“facade”, “pole”, “fence”, “traffic sign”, and “vegetation”) and three dynamic classes (“vehicle”, “bicycle”, “person”) with an overall accuracy of 94%. All static objects are entered into a voxel grid, to compare different measurement epochs directly. In the next step, the classified voxels are combined with the result of a visibility analysis. Therefore, we use a ray tracing algorithm to detect traversed voxels and differentiate between empty space and occlusion. Each voxel is classified as suitable for the static reference map or not by its object class and its occupation state during different epochs. Thereby, we avoid to eliminate static voxels which were occluded in some of the measurement runs (e.g. parts of a building occluded by a tree). However, segments that are only temporarily present and connected to static objects, such as scaffolds or awnings on buildings, are not included in the reference map. Overall, the combination of the classification with the subsequent entry of the classes into a voxel grid provides good and useful results that can be updated by including new measurement data

    THE ASSOCIATION OF SEQUENCE OF HIRING PRACTICE AND BIOPHYSICAL COMPONENTS IN SCREENING PROBATIONARY FIREFIGHTERS

    Get PDF
    Variation in hiring procedures occurs within fire service human resource departments. In this study, City 1 and City 2 applicants were required to pass their biophysical assessments prior to being hired as firefighters at the beginning and end of the screening process, respectively. City 1 applicants demonstrated significantly lower resting heart rate (RHR), resting diastolic blood pressure (RDBP), body fat% (BF) and higher z-scores for BF, trunk flexibility (TF) and overall clinical assessment (p<0.05). Regression analysis found that age and conducting the biophysical assessment at the end of the screening process explained poorer biophysical assessment results in BF% (R2=21%), BF z-score (R2=22%), TF z-score (R2=10%) and overall clinical assessment z-score (R2=7%). Each of RHR (OR=1.06, CI=1.01-1.10), RDBP (OR=1.05, CI=1.00-1.11) and BF% (OR=1.20, CI=1.07-1.37) increased the odds of being a City 2 firefighter (p<0.05). Biophysical screening at the end of the hiring process may result in the hiring of a less healthy firefighter

    An approach for constraining mantle viscosities through assimilation of palaeo sea level data into a glacial isostatic adjustment model

    Get PDF
    Glacial isostatic adjustment is largely governed by the rheological properties of the Earth's mantle. Large mass redistributions in the ocean–cryosphere system and the subsequent response of the viscoelastic Earth have led to dramatic sea level changes in the past. This process is ongoing, and in order to understand and predict current and future sea level changes, the knowledge of mantle properties such as viscosity is essential. In this study, we present a method to obtain estimates of mantle viscosities by the assimilation of relative sea level rates of change into a viscoelastic model of the lithosphere and mantle. We set up a particle filter with probabilistic resampling. In an identical twin experiment, we show that mantle viscosities can be recovered in a glacial isostatic adjustment model of a simple three-layer Earth structure consisting of an elastic lithosphere and two mantle layers of different viscosity. We investigate the ensemble behaviour on different parameters in the following three set-ups: (1) global observations data set since last glacial maximum with different ensemble initialisations and observation uncertainties, (2) regional observations from Fennoscandia or Laurentide/Greenland only, and (3) limiting the observation period to 10 ka until the present. We show that the recovery is successful in all cases if the target parameter values are properly sampled by the initial ensemble probability distribution. This even includes cases in which the target viscosity values are located far in the tail of the initial ensemble probability distribution. Experiments show that the method is successful if enough near-field observations are available. This makes it work best for a period after substantial deglaciation until the present when the number of sea level indicators is relatively high

    Data assimilation for a visco-elastic Earth deformation model

    Get PDF
    We present a data assimilation algorithm for the time-domain spectral-finite element code VILMA. We consider a 1D earth structure and a prescribed glaciation history ICE5G for the external mass load forcing. We use the Parallel Data Assimilation Framework (PDAF) to assimilate sea level data into the model in order to obtain better estimates of the viscosity structure of mantle and lithosphere. For this purpose, we apply a particle filter in which an ensemble of models is propagated in time, starting shortly before the last glacial maximum. At epochs when observations are available, each particle's performance is estimated and they are resampled based on their performance to form a new ensemble that better resembles the true viscosity distribution. In a proof of concept we show that with this method it is possible to reconstruct a synthetic viscosity distribution from which synthetic data were constructed. In a second step, paleo sea level data are used to infer an optimised 1D viscosity distribution
    • …
    corecore