64 research outputs found

    Isolation and characterization of strong gene regulatory sequences from apple, Malus x domestica

    Get PDF
    For the strong expression of genes in plant tissue, the availability of specific gene regulatory sequences is desired. We cloned promoter and terminator sequences of an apple (Malus x domestica) ribulose biphosphate carboxylase small subunit gene (MdRbcS), which is known for its high expression and used gus reporter gene expression to test the regulatory activity of the isolated promoter and terminator sequences in transgenic tobacco. The MdRbcS promoter itself seemed to be less strong than the CaMV35S promoter when both used in combination with the nos terminator. However, the combination of the promoter and terminator of MdRbcS was able to drive gus to similar expression levels as the reference construct with CaMV35S promoter and nos terminator. This observation indicates the importance of the terminator sequence for gene expression. It is concluded that the combination of the MdRbcS promoter and terminator is a suitable regulatory sequence set for the expression of transgenes to a high level in plants and for intragenesis in apple specificall

    Risk assessment of T-DNA borders from Agrobacterium tumefaciens in cisgenic crops

    Get PDF
    Letter to Minister Cramer (VROM

    Development of cisgenic apples with durable resistance to apple scab

    Get PDF
    Most of the apple (Malus × domestica) growers are facing serious disease problems with apple scab which is caused by the fungus Venturia inaequalis. Developing a resistant variety in apple through classical breeding is very slow and inefficient. So, we aim at improving existing apple varieties through a new concept called “cisgenesis” which saves time and effort compared to classical breeding. Malus floribunda proved to be a good source of natural scab resistance genes. The genes HcrVf1 and HcrVf2, consisting of promoter, coding and terminator sequences in their natural configuration, were isolated from Malus floribunda and cloned into the binary vector pMF1. Apple cv. ‘Gala’ was transformed with pMF1 containing HcrVf1 and HcrVf2, individually or in combination. pMF1 can be used to obtain marker-free plants by recombinase-based excision of a fragment carrying undesired gene sequences, such as antibiotic-selection marker genes, leaving behind only the gene(s)-of-interest and one recombination site. Using this vector it is therefore possible to stack several genes by retransformation using the same selection procedure. In order to obtain durable resistance, we have the intention to combine different resistance genes from Malus either by stacking them one by one or by introducing them all together in one T-DNA. Performance of all different types of cisgenic plants will be evaluated by monitoring scab resistance levels phenotypically and by determining gene expression profiles through quantitative RT-PC

    Clean vector technology for marker-free transgenic fruit crops

    Get PDF
    Marker-free transgenic crops confer several advantages over transgenic crops equipped with selection genes coding e.g. for antibiotic resistance. Firstly, the European Union has prepared a guidance document for risk assessment of GM-crops to be introduced in the environment (E.U. Joint Working Group on Novel Foods and GMO’s, 2003). In this document based on compliance to consumer demands the EU encourages to “avoid or minimise the inclusion of superfluous transgenes or sequences”. EU thus promotes the use of clean vector systems. Secondly, the number of selection genes allowing the preferential growth of transformed cells and tissues is limited. Often a gene transfer protocol for a specific crop or even a cultivar depends on the use of one specific selectable marker gene. Hence, stacking of genes within the same transgenic line is difficult once a selectable marker gene has been introduced. If these marker genes can be removed, the subsequent introduction of the next gene-of-interest is greatly facilitated. At Plant Research International a system has been developed for specific elimination of any introduced DNA/gene sequences using site-specific recombination combined with selection for successful removal using a negative selection system. Completely marker-free transgenic plants have been obtained using a model vector, both in an efficient transformation system (strawberry) as well as in a non-efficient transformation system (apple). Frequencies were more than adequate. Presently a versatile vector set providing a choice of several selectable markers and carrying a multiple cloning site for receiving cassettes of the gene-of-interest is available for application in, amongst others, fruit crops

    Clean vector technology for marker-free transgenic ornamentals

    Get PDF
    Marker-free transgenic crops confer several advantages over transgenic crops equipped with e.g. genes coding for antibiotic resistance. Firstly, the European Union encourages notifiers for introductions of GMOs in the environment to ¿avoid or minimize the inclusion of superfluous transgenes or sequences¿ and it promotes the use of clean vector systems. Secondly, the number of selection genes allowing the preferential growth of transformed cells and tissues is limited and often a gene transfer protocol for a specific crop or even a cultivar depends on the use of one specific selectable marker gene. Hence, stacking of genes within the same transgenic line is difficult once a selectable marker gene has been introduced. If these marker genes can be removed, the subsequent introduction of the next gene-of-interest is greatly facilitated. At Plant Research International a system has been developed for specific elimination of any introduced DNA/gene sequences using site-specific recombination combined with selection for successful removal using a negative selection system. Completely marker-free transgenic plants have been obtained using a model vector, both in an efficient transformation system (strawberry) as well as in a non-efficient transformation system (apple). Frequencies were more than adequate. Presently. A versatile vector set providing a choice of several selectable markers and carrying a multiple cloning site for receiving cassettes of the gene-of-interest is available for application in, amongst others, ornamental crop

    One-Step Agrobacterium Mediated Transformation of Eight Genes Essential for Rhizobium Symbiotic Signaling Using the Novel Binary Vector System pHUGE

    Get PDF
    Advancement in plant research is becoming impaired by the fact that the transfer of multiple genes is difficult to achieve. Here we present a new binary vector for Agrobacterium tumefaciens mediated transformation, pHUGE-Red, in concert with a cloning strategy suited for the transfer of up to nine genes at once. This vector enables modular cloning of large DNA fragments by employing Gateway technology and contains DsRED1 as visual selection marker. Furthermore, an R/Rs inducible recombination system was included allowing subsequent removal of the selection markers in the newly generated transgenic plants. We show the successful use of pHUGE-Red by transferring eight genes essential for Medicago truncatula to establish a symbiosis with rhizobia bacteria as one 74 kb T-DNA into four non-leguminous species; strawberry, poplar, tomato and tobacco. We provide evidence that all transgenes are expressed in the root tissue of the non-legumes. Visual control during the transformation process and subsequent marker gene removal makes the pHUGE-Red vector an excellent tool for the efficient transfer of multiple genes

    Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin)

    Get PDF
    Four classes of apple allergens (Mal d 1, ¿2, ¿3 and ¿4) have been reported. By using PCR cloning and sequencing approaches, we obtained genomic sequences of Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin) from the cvs Prima and Fiesta, the two parents of a European reference mapping population. Two copies of the Mal d 2 gene (Mal d 2.01A and Mal d 2.01B) were identified, which primarily differed in the length of a single intron (378 or 380 nt) and in one amino acid in the signal peptide. Both Mal d 2.01A and Mal d 2.01B were mapped at identical position on linkage group 9. Genomic characterization of four Mal d 4 genes (Mal d 4.01A and B, Mal d 4.02A and Mal d 4.03A) revealed their complete gDNA sequences which varied among genes in length from 862 to 2017 nt. They all contained three exons of conserved length: 123, 138, and 135 nt. Mal d 4.01 appeared to be duplicated in two copies and located on linkage group 9. Mal d 4.02A and Mal d 4.03A were single copy genes located on linkage group 2 and 8, respectivel

    Cisgenic apple trees; development, characterization, and performance

    Get PDF
    Two methods were developed for the generation of cisgenic apples. Both have been successfully applied producing trees. The first method avoids the use of any foreign selectable marker genes; only the gene-of-interest is integrated between the T-DNA border sequences. The second method makes use of recombinase-based marker excision. For the first method we used the MdMYB10 gene from a red-fleshed apple coding for a transcription factor involved in regulating anthocyanin biosynthesis. Red plantlets were obtained and presence of the cisgene was confirmed. Plantlets were grafted and grown in a greenhouse. After 3 years, the first flowers appeared, showing red petals. Pollination led to production of red-fleshed cisgenic apples. The second method used the pM(arker)F(ree) vector system, introducing the scab resistance gene Rvi6, derived from apple. Agrobacterium-mediated transformation, followed by selection on kanamycin, produced genetically modified apple lines. Next, leaves from in vitro material were treated to activate the recombinase leading to excision of selection genes. Subsequently, the leaf explants were subjected to negative selection for marker-free plantlets by inducing regeneration on medium containing 5-fluorocytosine. After verification of the marker-free nature, the obtained plants were grafted onto rootstocks. Young trees from four cisgenic lines and one intragenic line, all containing Rvi6, were planted in an orchard. Appropriate controls were incorporated in this trial. We scored scab incidence for three consecutive years on leaves after inoculations with Rvi6-avirulent strains. One cisgenic line and the intragenic line performed as well as the resistant control. In 2014 trees started to overcome their juvenile character and formed flowers and fruits. The first results of scoring scab symptoms on apple fruits were obtained. Apple fruits from susceptible controls showed scab symptoms, while fruits from cisgenic and intragenic lines were free of scab
    corecore