28 research outputs found

    Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts.

    Get PDF
    The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system

    High Log-Scale Expansion of Functional Human Natural Killer Cells from Umbilical Cord Blood CD34-Positive Cells for Adoptive Cancer Immunotherapy

    Get PDF
    Immunotherapy based on natural killer (NK) cell infusions is a potential adjuvant treatment for many cancers. Such therapeutic application in humans requires large numbers of functional NK cells that have been selected and expanded using clinical grade protocols. We established an extremely efficient cytokine-based culture system for ex vivo expansion of NK cells from hematopoietic stem and progenitor cells from umbilical cord blood (UCB). Systematic refinement of this two-step system using a novel clinical grade medium resulted in a therapeutically applicable cell culture protocol. CD56+CD3− NK cell products could be routinely generated from freshly selected CD34+ UCB cells with a mean expansion of >15,000 fold and a nearly 100% purity. Moreover, our protocol has the capacity to produce more than 3-log NK cell expansion from frozen CD34+ UCB cells. These ex vivo-generated cell products contain NK cell subsets differentially expressing NKG2A and killer immunoglobulin-like receptors. Furthermore, UCB-derived CD56+ NK cells generated by our protocol uniformly express high levels of activating NKG2D and natural cytotoxicity receptors. Functional analysis showed that these ex vivo-generated NK cells efficiently target myeloid leukemia and melanoma tumor cell lines, and mediate cytolysis of primary leukemia cells at low NK-target ratios. Our culture system exemplifies a major breakthrough in producing pure NK cell products from limited numbers of CD34+ cells for cancer immunotherapy

    Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process

    Get PDF
    Contains fulltext : 97724.pdf (publisher's version ) (Open Access)Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34(+) cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34(+) UCB cells could be reproducibly amplified and differentiated into CD56(+)CD3(-) NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2x10(9) NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials

    Effectiveness of two intensive treatment methods for smoking cessation and relapse prevention in patients with coronary heart disease: study protocol and baseline description

    Get PDF
    Contains fulltext : 111068.pdf (publisher's version ) (Open Access)BACKGROUND: There is no more effective intervention for secondary prevention of coronary heart disease than smoking cessation. Yet, evidence about the (cost-)effectiveness of smoking cessation treatment methods for cardiac inpatients that also suit nursing practice is scarce. This protocol describes the design of a study on the (cost-)effectiveness of two intensive smoking cessation interventions for hospitalised cardiac patients as well as first results on the inclusion rates and the characteristics of the study population. METHODS/DESIGN: An experimental study design is used in eight cardiac wards of hospitals throughout the Netherlands to assess the (cost-)effectiveness of two intensive smoking cessation counselling methods both combined with nicotine replacement therapy. Randomization is conducted at the ward level (cross-over). Baseline and follow-up measurements after six and 12 months are obtained. Upon admission to the cardiac ward, nurses assess patients' smoking behaviour, ensure a quit advice and subsequently refer patients for either telephone counselling or face-to-face counselling. The counselling interventions have a comparable structure and content but differ in provider and delivery method, and in duration. Both counselling interventions are compared with a control group receiving no additional treatment beyond the usual care. Between December 2009 and June 2011, 245 cardiac patients who smoked prior to hospitalisation were included in the usual care group, 223 in the telephone counselling group and 157 in the face-to-face counselling group. Patients are predominantly male and have a mean age of 57 years. Acute coronary syndrome is the most frequently reported admission diagnosis. The ultimate goal of the study is to assess the effects of the interventions on smoking abstinence and their cost-effectiveness. Telephone counselling is expected to be more (cost-)effective in highly motivated patients and patients with high SES, whereas face-to-face counselling is expected to be more (cost-)effective in less motivated patients and patients with low SES. DISCUSSION: This study examines two intensive smoking cessation interventions for cardiac patients using a multi-centre trial with eight cardiac wards. Although not all eligible patients could be included and the distribution of patients is skewed in the different groups, the results will be able to provide valuable insight into effects and costs of counselling interventions varying in delivery mode and intensity, also concerning subgroups. TRIAL REGISTRATION: Dutch Trial Register NTR2144
    corecore