30 research outputs found

    Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia

    Get PDF
    Land surface albedo, the fraction of incoming solar radiation reflected by the land surface, is a key component of the Earth system. This study evaluates snow-free surface albedo simulations by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model with the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour L'Observation de la Terre (SPOT) albedo. We compare results from offline simulations over the Australian continent. The control simulation has prescribed background snow-free and vegetation-free soil albedo derived from MODIS whilst the experiments use a simple parameterisation based on soil moisture and colour, originally from the Biosphere Atmosphere Transfer Scheme (BATS), and adopted in the Common Land Model (CLM). The control simulation, with prescribed soil albedo, shows that CABLE simulates overall albedo over Australia reasonably well, with differences compared to MODIS and SPOT albedos within ±0.1. Application of the original BATS scheme, which uses an eight-class soil classification, resulted in large differences of up to −0.25 for the near-infrared (NIR) albedo over large parts of the desert regions of central Australia. The use of a recalibrated 20-class soil colour classification from the CLM, which includes a higher range for saturated and VIS (visible) and NIR soil albedos, reduced the underestimation of the NIR albedo. However, this soil colour mapping is tuned to CLM soil moisture, a quantity which is not necessarily transferrable between land surface models. We therefore recalibrated the soil color map using CABLE's climatological soil moisture, which further reduced the underestimation of the NIR albedo to within ±0.15 over most of the continent as compared to MODIS and SPOT albedos. Small areas of larger differences of up to −0.25 remained within the central arid parts of the continent during summer; however, the spatial extent of these large differences is substantially reduced as compared to the simulation using the default eight-class uncalibrated soil colour map. It is now possible to use CABLE coupled to atmospheric models to investigate soil-moisture–albedo feedbacks, an important enhancement of the model

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    CT angiography and CT perfusion improve prediction of infarct volume in patients with anterior circulation stroke

    Get PDF
    Introduction: We investigated whether baseline CT angiography (CTA) and CT perfusion (CTP) in acute ischemic stroke could improve prediction of infarct presence and infarct volume on follow-up imaging. Methods: We analyzed 906 patients with suspected anterior circulation stroke from the prospective multicenter Dutch acute stroke study (DUST). All patients underwent baseline non-contrast CT, CTA, and CTP and follow-up non-contrast CT/MRI after 3 days. Multivariable regression models were developed including patient characteristics and non-contrast CT, and subsequently, CTA and CTP measures were added. The increase in area under the curve (AUC) and R2 was assessed to determine the additional value of CTA and CTP. Results: At follow-up, 612 patients (67.5 %) had a detectable infarct on CT/MRI; median infarct volume was 14.8 mL (interquartile range (IQR) 2.8–69.6). Regarding infarct presence, the AUC of 0.82 (95 % confidence interval (CI) 0.79–0.85) for patient characteristics and non-contrast CT was improved with addition of CTA measures (AUC 0.85 (95 % CI 0.82–0.87); p < 0.001) and was even higher after addition of CTP measures (AUC 0.89 (95 % CI 0.87–0.91); p < 0.001) and combined CTA/CTP measures (AUC 0.89 (95 % CI 0.87–0.91); p < 0.001). For infarct volume, adding combined CTA/CTP measures (R2 = 0.58) was superior to patient characteristics and non-contrast CT alone (R2 = 0.44) and to addition of CTA alone (R2 = 0.55) or CTP alone (R2 = 0.54; all p < 0.001). Conclusion: In the acute stage, CTA and CTP have additional value over patient characteristics and non-contrast CT for predicting infarct presence and infarct volume on follow-up imaging. These findings could be applied for patient selection in future trials on ischemic stroke treatment

    Prediction of outcome in patients with suspected acute ischaemic stroke with CT perfusion and CT angiography: The Dutch acute stroke trial (DUST) study protocol

    Get PDF
    Background: Prediction of clinical outcome in the acute stage of ischaemic stroke can be difficult when based on patient characteristics, clinical findings and on non-contrast CT. CT perfusion and CT angiography may provide additional prognostic information and guide treatment in the early stage. We present the study protocol of the Dutch acute Stroke Trial (DUST). The DUST aims to assess the prognostic value of CT perfusion and CT angiography in predicting stroke outcome, in addition to patient characteristics and non-contrast CT. For this purpose, individualised prediction models for clinical outcome after stroke based on the best predictors from patient characteristics and CT imaging will be developed and validated.Methods/design: The DUST is a prospective multi-centre cohort study in 1500 patients with suspected acute ischaemic stroke. All patients undergo non-contrast CT, CT perfusion and CT angiography within 9 hours after onset of the neurological deficits, and, if possible, follow-up imaging after 3 days. The primary outcome is a dichotomised score on the modified Rankin Scale, assessed at 90 days. A score of 0-2 represents good outcome, and a score of 3-6 represents poor outcome. Three logistic regression models will be developed, including patient characteristics and non-contrast CT (model A), with addition of CT angiography (model B), and CT perfusion parameters (model C). Model derivation will be performed in 60% of the study population, and model validation in the remaining 40% of the patients. Additional prognostic value of the models will be determined with the area under the curve (AUC) from the receiver operating characteristic (ROC) curve, calibration plots, assessment of goodness-of-fit, and likelihood ratio tests.Discussion: This study will provide insight in the added prognosti

    No relation between body temperature and arterial recanalization at three days in patients with acute ischaemic stroke

    Get PDF
    Background: Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods: We included 278 patients with acute ischaemic stroke within nine hours after symptom onset, who had an intracranial arterial occlusion on admission CT angiography, in 13 participating centres. We calculated the relation per every 0.1°Celsius increase in admission body temperature and recanalization at three days. Results: Recanalization occurred in 80% of occluded arteries. There was no relation between body temperature and recanalization at three days after adjustments for age, NIHSS score on admission and treatment with alteplase (adjusted odds ratio per 0.1°Celsius, 0.99; 95% confidence interval, 0.94-1.05; p = 0.70). Results for patients treated or not treated with alteplase were essentially the same. Conclusions: Our findings suggest that in patients with acute ischaemic stroke there is no relation between body temperature on admission and recanalization of an occluded intracranial artery three days later, irrespective of treatment with alteplase

    Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    Get PDF
    Background: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. Methods: In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Results: Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Conclusions: Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days

    Intracranial Cerebrospinal Fluid Volume as a Predictor of Malignant Middle Cerebral Artery Infarction

    Get PDF
    Background and Purpose— Predicting malignant middle cerebral artery (MCA) infarction can help to identify patients who may benefit from preventive decompressive surgery. We aimed to investigate the association between the ratio of intracranial cerebrospinal fluid (CSF) volume to intracranial volume (ICV) and malignant MCA infarction. Methods— Patients with an occlusion proximal to the M3 segment of the MCA were selected from the DUST (Dutch Acute Stroke Study). Admission imaging included noncontrast computed tomography (CT), CT perfusion, and CT angiography. Patient characteristics and CT findings were collected. The ratio of intracranial CSF volume to ICV (CSF/ICV) was quantified on admission thin-slice noncontrast CT. Malignant MCA infarction was defined as a midline shift of >5 mm on follow-up noncontrast CT, which was performed 3 days after the stroke or in case of clinical deterioration. To test the association between CSF/ICV and malignant MCA infarction, odds ratios and 95% CIs were calculated for 3 multivariable models by using binary logistic regression. Model performances were compared by using the likelihood ratio test. Results— Of the 286 included patients, 35 (12%) developed malignant MCA infarction. CSF/ICV was independently associated with malignant MCA infarction in 3 multivariable models: (1) with age and admission National Institutes of Health Stroke Scale (odds ratio, 3.3; 95% CI, 1.1–11.1), (2) with admission National Institutes of Health Stroke Scale and poor collateral score (odds ratio, 7.0; 95% CI, 2.6–21.3), and (3) with terminal internal carotid artery or proximal M1 occlusion and poor collateral score (odds ratio, 7.7; 95% CI, 2.8–23.9). The performance of model 1 (areas under the receiver operating characteristic curves, 0.795 versus 0.824; P=0.033), model 2 (areas under the receiver operating characteristic curves, 0.813 versus 0.850; P<0.001), and model 3 (areas under the receiver operating characteristic curves, 0.811 versus 0.856; P<0.001) improved significantly after adding CSF/ICV. Conclusions— The CSF/ICV ratio is associated with malignant MCA infarction and has added value to clinical and imaging prediction models in limited numbers of patients

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr
    corecore