171 research outputs found

    Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers

    Get PDF
    We report the influence of higher order modes (HOMs) in large mode fibers operation in Q-switched oscillator configurations at similar to 2 mu m wavelength. S-2 measurements confirm guiding of LP11 and LP02 fiber modes in a large mode area (LMA) step-index fiber, whereas a prototype photonic crystal fiber (PCF) provides nearly single-mode performance with a small portion of light in the LP11 mode. The difference in HOM content leads to a significant difference in Q-switched oscillator performance. In the step-index fiber, the percentage of cladding light increases by 20% to \u3e 40% with increasing pulse energy to similar to 250 mu J. We accredit this degradation to saturation of the gain in the fundamental mode leading to more light generated in the HOMs, which is eventually converted into cladding light. No such degradation is seen in PCF laser system for \u3e 400 mu J energies

    Ion-Exchanged Waveguides in Glass Doped with PbS Quantum Dots

    Get PDF
    The lowest-loss (≤1 dB/cm) ion-exchanged waveguides in glass doped with PbS quantum dots are presented. Near-field mode profile and refractive index profile using the refracted near-field technique were measured for these waveguides. We demonstrate that the optical properties of this glass unchanged during the ion-exchange process

    Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser

    Get PDF
    Multi-core fibers (MCFs) with coupled-cores are attractive large-mode area (LMA) specialty fiber designs that support the propagation of a few transverse modes often called supermodes (SMs). Compared to other LMA fibers, the uniqueness of MCF arises from the higher degrees of design space offered by a multitude of core-array geometries, resulting in extended flexibility to tailor SM properties. To date, the use of MCF as gain media has focused on lasers that operate in only one selected SM, typically the lowest order in-phase SM, which considerably limited the potential of these multi-core structures. Here, we expand the potential of MCF lasers by investigating multi-SM amplification and lasing schemes. Amplifier and laser systems using a 7 coupled-cores Yb-doped MCF as gain medium were successfully designed and assembled. Individual SM could be decomposed using the correlation filter technique mode analysis and the modal amplification factors (gamma(i)) were recorded. With access to amplification characteristics of individual transverse modes, a monolithic MCF laser was demonstrated that operates simultaneously on the two SMs carrying the highest optical gain

    Nonlinear Optical Response in two-dimensional Mott Insulators

    Full text link
    We study the third-order nonlinear optical susceptibility χ(3)\chi^{(3)} and photoexcited states of two-dimensional (2D) Mott insulators by using an effective model in the strong-coupling limit of a half-filled Hubbard model. In the numerically exact diagonalization calculations on finite-size clusters, we find that the coupling of charge and spin degrees of freedom plays a crucial role in the distribution of the dipole-allowed states with odd parity and the dipole-forbidden states with even parity in the photoexcited states. This is in contrast with the photoexcited states in one dimension, where the charge and spin degrees of freedom are decoupled. In the third-harmonic generation (THG) spectrum, main contribution is found to come from the process of three-photon resonance associated with the odd-parity states. As a result, the two-photon resonance process is less pronounced in the THG spectrum. The calculated THG spectrum is compared with recent experimental data. We also find that χ(3)\chi^{(3)} with cross-polarized configuration of pump and probe photons shows spectral distributions similar to χ(3)\chi^{(3)} with co-polarized configuration, although the weight is small. These findings will help the analyses of the experimental data of χ(3)\chi^{(3)} in the 2D Mott insulators.Comment: 9 pages,5 figures,RevTeX

    Stress and structural damage sensing piezospectroscopic coatings validated with digital image correlation

    Get PDF
    The piezospectroscopic effect, relating a material\u27s stress state and spectral signature, has recently demonstrated tailorable sensitivity when the photo-luminescent alpha alumina is distributed in nanoparticulate form within a matrix. Here, the stress-sensing behavior of an alumina-epoxy nanoparticle coating, applied to a composite substrate in an open hole tension configuration, is validated with the biaxial strain field concurrently determined through digital image correlation. The coating achieved early detection of composite failure initiation at 77% failure load, and subsequently tracked stress distribution in the immediate vicinity of the crack as it progressed, demonstrating non-invasive stress and damage detection with multi-scale spatial resolution

    Composed multicore fiber structure for direction-sensitive curvature monitoring

    Get PDF
    The present work deals with a curvature sensor that consists of two segments of asymmetric multicore fiber (MCF) fusion spliced with standard single mode fiber (SMF). The MCF comprises three strongly coupled cores; one of such cores is at the geometrical center of the MCF. The two segments of MCF are short, have different lengths (less than 2 cm each), and are rotated 180 degrees with respect to each other. The fabrication of the sensor was carried out with a fusion splicing machine that has the means for rotating optical fibers. It is demonstrated that the sensor behaves as two SMF-MCF-SMF structures in series, and consequently, it has enhanced sensitivity. The device proposed here can be used to sense the direction and amplitude of curvature by monitoring either wavelength shifts or intensity changes. In the latter case, high curvature sensitivity was observed. The device can also be used for the development of other highly sensitive sensors to monitor, for example, vibrations, force, pressure, or any other parameter that induces periodic or local curvature or bending to the MCF segments.The authors acknowledge the financial support of the Spanish MINECO under Project Nos. PGC2018-101997-B-I00 and RTI2018-094669-B-C31 of the Eusko Jaurlaritza (Basque Government) under Project Nos. IT933-16 and ELKARTEK

    Accurate Strain Sensing Based On Super-Mode Interference In Strongly Coupled Multi-Core Optical Fibres

    Get PDF
    We report on the use of a multi-core fibre (MCF) comprising strongly-coupled cores for accurate strain sensing. Our MCF is designed to mode match a standard single mode optical fibre. This allows us to fabricate simple MCF interferometers whose interrogation is carried out with light sources, detectors and fibre components readily available from the optical communications tool box. Our MCF interferometers were used for sensing strain. The sensor calibration was carried out in a high-fidelity aerospace test laboratory. In addition, a packaged MCF interferometer was transferred into field trials to validate its performance under deployment conditions, specifically the sensors were installed in a historical iron bridge. Our results suggest that the MCF strain sensors here proposed are likely to reach the readiness level to compete with other mature sensor technologies, hence to find commercial application. An important advantage of our MCF interferometers is their capability to operate at very high temperatures.This work has been funded by the Fondo Europeo de Desarrollo Regional (FEDER); by the Ministerio de Economia y Competitividad under project TEC2015-638263-C03-1-R; by the Gobierno Vasco/Eusko Jaurlaritza under projects IT933-16 and ELKARTEK; and by the University of the Basque Country UPV/EHU under programme UFI11/16

    Temperature-insensitive curvature sensor based on Bragg gratings written in strongly coupled multicore fiber

    Full text link
    [EN] A novel temperature-insensitive optical curvature sensor has been proposed and demonstrated. The sensor is fabricated by inscribing fiber Bragg gratings with short lengths into a piece of strongly coupled multicore fiber (SCMCF) and spliced to the conventional single-mode fiber. Due to the two supermodes being supported by the SCMCF, two resonance peaks, along with a deep notch between them, were observed in the reflection spectrum. The experimental results show that the depth of the notch changes with the curvature with a sensitivity up to 15.9dB/m-1 in a lower curvature range. Besides, thanks to the unique property of the proposed sensor, the notch depth barely changes with temperature. Based on the intensity demodulation of the notch depth, the temperature-insensitive curvature sensor is achieved with the cross sensitivity between the temperature, and the curvature is as low as 0.001m-1/¿C.National Natural Science Foundation of China (62071395); the 111 Project (B18045); Sichuan Province Science and Technology Support Program (2020YJ0329); Universitat Politècnica de València (PAID-01-18); Ministerio de Economía y Competitividad (PGC2018-101997-B-I00, TEC2017-88029-R).Liu, Z.; Zheng, D.; Madrigal-Madrigal, J.; Villatoro, J.; Antonio-Lopez, JE.; Schülzgen, A.; Amezcua-Correa, R.... (2021). Temperature-insensitive curvature sensor based on Bragg gratings written in strongly coupled multicore fiber. Optics Letters. 46(16):3933-3936. https://doi.org/10.1364/OL.432889S39333936461

    Third-order nonlinear optical response and photoluminescence characterization of tellurite glasses with different alkali metal oxides as network modifiers

    Get PDF
    Studies of the third-order nonlinear optical properties in TeO(2)-MO-R(2)O glasses with three different alkali metal oxides R(2)O (R - Li, Na, K) as network modifiers and two network intermediates MO (M - Zn, Mg) are reported. The influence of such modifiers and intermediates on the nonlinear optical properties of these glasses was investigated using the standard Z-scan and the thermally managed Z-scan techniques under femtosecond pulse excitation at 800 nm. For different modifiers and intermediates, the nonlinear refraction indices n(2) of these glasses varied in the range 1.31-2.81 (x10(-15) cm(2)/W). It was found that n(2) increases as the ionic radius of both network modifiers and intermediates decreases. Furthermore, the measurements show that the contribution from thermo-optical effects to the nonlinear refraction index is negligible for all of the studied glass compositions. In addition, the effect of modifiers and intermediates in the formation of localized states in the vicinity of the optical bandgap was also studied through photoluminescence experiments. These experiments revealed the presence of two emission bands (red and blue) originating from these localized states that can be populated after optical excitation and subsequent relaxation
    corecore