312 research outputs found

    Prozess- und Ergebnisqualität der chirurgischen Therapie von Ösophagusperforationen

    Full text link
    Die Arbeit untersucht den stationären und postoperativen Langzeitverlauf von 58 Patienten, die aufgrund einer Ösophagusperforation operativ behandelt wurden. Zur Diagnosestellung eignete sich eine Kombination aus Ösophagographie und ÖGD/Röntgenaufnahme des Thorax. OP-Verfahren der Wahl war unabhängig vom Ausmaß der Läsion oder vom OP-Zeitpunkt die Übernähung (74%). Bei gegebener Indikation erfolgte eine Ösophagusresektion (17%), eine alleinige Drainagenversorgung (7%) oder Exploration (2%). Zur Reduktion der Nahtinsuffizienz nach Übernähung sollte bei Achalasiepatienten zusätzlich eine Myotomie erfolgen. Die postoperative Letalität (14%) war mit Komplikationen infektiöser Genese (v.a. Mediastinitis, Sepsis) korreliert. Ein verspäteter Therapiebeginn, das Perforationsausmaß oder OP-Verfahren hatten keinen signifikanten Einfluss. Eine postoperative Versorgung durch eine Magensonde erwies sich als Vorteil, da diese Patienten im Langzeitverlauf signifikant häufiger beschwerdefrei waren

    Dynamic Approach to the Fully Frustrated XY Model

    Full text link
    Using Monte Carlo simulations, we systematically investigate the non-equilibrium dynamics of the chiral degree of freedom in the two-dimensional fully frustrated XY model. The critical initial increase of the staggered chiral magnetization is observed. By means of the short-time dynamics approach, we estimate the second order phase transition temperature TcT_{c} and all the dynamic and static critical exponents θ\theta, z, β\beta and ν\nu.Comment: 5 pages with 6 figures include

    Multiplet ligand-field theory using Wannier orbitals

    Full text link
    We demonstrate how ab initio cluster calculations including the full Coulomb vertex can be done in the basis of the localized, generalized Wannier orbitals which describe the low-energy density functional (LDA) band structure of the infinite crystal, e.g. the transition metal 3d and oxygen 2p orbitals. The spatial extend of our 3d Wannier orbitals (orthonormalized Nth order muffin-tin orbitals) is close to that found for atomic Hartree-Fock orbitals. We define Ligand orbitals as those linear combinations of the O 2p Wannier orbitals which couple to the 3d orbitals for the chosen cluster. The use of ligand orbitals allows for a minimal Hilbert space in multiplet ligand-field theory calculations, thus reducing the computational costs substantially. The result is a fast and simple ab initio theory, which can provide useful information about local properties of correlated insulators. We compare results for NiO, MnO and SrTiO3 with x-ray absorption, inelastic x-ray scattering, and photoemission experiments. The multiplet ligand field theory parameters found by our ab initio method agree within ~10% to known experimental values

    Critical exponents of the two-layer Ising model

    Full text link
    The symmetric two-layer Ising model (TLIM) is studied by the corner transfer matrix renormalisation group method. The critical points and critical exponents are calculated. It is found that the TLIM belongs to the same universality class as the Ising model. The shift exponent is calculated to be 1.773, which is consistent with the theoretical prediction 1.75 with 1.3% deviation.Comment: 7 pages, with 10 figures include

    Dynamic Simulations of the Kosterlitz-Thouless Phase Transition

    Full text link
    Based on the short-time dynamic scaling form, a novel dynamic approach is proposed to tackle numerically the Kosterlitz-Thouless phase transition. Taking the two-dimensional XY model as an example, the exponential divergence of the spatial correlation length, the transition temperature TKTT_{KT} and all critical exponents are computed. Compared with Monte Carlo simulations in equilibrium, we obtain data at temperatures nearer to TKTT_{KT}.Comment: to appear in Phys. Rev. E in Rapid Communicatio

    Finite Size Scaling and Critical Exponents in Critical Relaxation

    Full text link
    We simulate the critical relaxation process of the two-dimensional Ising model with the initial state both completely disordered or completely ordered. Results of a new method to measure both the dynamic and static critical exponents are reported, based on the finite size scaling for the dynamics at the early time. From the time-dependent Binder cumulant, the dynamical exponent zz is extracted independently, while the static exponents β/ν\beta/\nu and ν\nu are obtained from the time evolution of the magnetization and its higher moments.Comment: 24 pages, LaTeX, 10 figure

    The stress-inducible protein DRR1 exerts distinct effects on actin dynamics

    Get PDF
    Cytoskeletal dynamics are pivotal to memory, learning, and stress physiology, and thus psychiatric diseases. Downregulated in renal cell carcinoma 1 (DRR1) protein was characterized as the link between stress, actin dynamics, neuronal function, and cognition. To elucidate the underlying molecular mechanisms, we undertook a domain analysis of DRR1 and probed the effects on actin binding, polymerization, and bundling, as well as on actin-dependent cellular processes. METHODS: DRR1 domains were cloned and expressed as recombinant proteins to perform in vitro analysis of actin dynamics (binding, bundling, polymerization, and nucleation). Cellular actin-dependent processes were analyzed in transfected HeLa cells with fluorescence recovery after photobleaching (FRAP) and confocal microscopy. RESULTS: DRR1 features an actin binding site at each terminus, separated by a coiled coil domain. DRR1 enhances actin bundling, the cellular F-actin content, and serum response factor (SRF)-dependent transcription, while it diminishes actin filament elongation, cell spreading, and actin treadmilling. We also provide evidence for a nucleation effect of DRR1. Blocking of pointed end elongation by addition of profilin indicates DRR1 as a novel barbed end capping factor. CONCLUSIONS: DRR1 impacts actin dynamics in several ways with implications for cytoskeletal dynamics in stress physiology and pathophysiology

    Inelastic X-ray Scattering by Electronic Excitations in Solids at High Pressure

    Get PDF
    Investigating electronic structure and excitations under extreme conditions gives access to a rich variety of phenomena. High pressure typically induces behavior such as magnetic collapse and the insulator-metal transition in 3d transition metals compounds, valence fluctuations or Kondo-like characteristics in ff-electron systems, and coordination and bonding changes in molecular solids and glasses. This article reviews research concerning electronic excitations in materials under extreme conditions using inelastic x-ray scattering (IXS). IXS is a spectroscopic probe of choice for this study because of its chemical and orbital selectivity and the richness of information it provides. Being an all-photon technique, IXS has a penetration depth compatible with high pressure requirements. Electronic transitions under pressure in 3d transition metals compounds and ff-electron systems, most of them strongly correlated, are reviewed. Implications for geophysics are mentioned. Since the incident X-ray energy can easily be tuned to absorption edges, resonant IXS, often employed, is discussed at length. Finally studies involving local structure changes and electronic transitions under pressure in materials containing light elements are briefly reviewed.Comment: submitted to Rev. Mod. Phy

    Dynamic Monte Carlo Measurement of Critical Exponents

    Full text link
    Based on the scaling relation for the dynamics at the early time, a new method is proposed to measure both the static and dynamic critical exponents. The method is applied to the two dimensional Ising model. The results are in good agreement with the existing results. Since the measurement is carried out in the initial stage of the relaxation process starting from independent initial configurations, our method is efficient.Comment: (5 pages, 1 figure) Siegen Si-94-1

    Lindhard and RPA susceptibility computations in extended momentum space in electron doped cuprates

    Full text link
    We present an approximation for efficient calculation of the Lindhard susceptibility χL(q,ω)\chi^{L}(q,\omega) in a periodic system through the use of simple products of real space functions and the fast Fourier transform (FFT). The method is illustrated by providing χL(q,ω)\chi^{L}(q,\omega) results for the electron doped cuprate Nd2x_{2-x}Cex_{x}CuO4_{4} extended over several Brillouin zones. These results are relevant for interpreting inelastic X-ray scattering spectra from cuprates.Comment: 6 pages, 6 figures, accepted in Physical Review
    corecore