We demonstrate how ab initio cluster calculations including the full Coulomb
vertex can be done in the basis of the localized, generalized Wannier orbitals
which describe the low-energy density functional (LDA) band structure of the
infinite crystal, e.g. the transition metal 3d and oxygen 2p orbitals. The
spatial extend of our 3d Wannier orbitals (orthonormalized Nth order muffin-tin
orbitals) is close to that found for atomic Hartree-Fock orbitals. We define
Ligand orbitals as those linear combinations of the O 2p Wannier orbitals which
couple to the 3d orbitals for the chosen cluster. The use of ligand orbitals
allows for a minimal Hilbert space in multiplet ligand-field theory
calculations, thus reducing the computational costs substantially. The result
is a fast and simple ab initio theory, which can provide useful information
about local properties of correlated insulators. We compare results for NiO,
MnO and SrTiO3 with x-ray absorption, inelastic x-ray scattering, and
photoemission experiments. The multiplet ligand field theory parameters found
by our ab initio method agree within ~10% to known experimental values